[1] Abdi, A. Construction of high order quadratically stable second derivative general linear methods for the numerical integration of stiff ODEs, J. Comput. Appl. Math. 303 (2016), 218–228.
[2] Abdi, A. and Hojjati, G. Implementation of Nordsieck second derivative methods for stiff ODEs, Appl. Numer. Math. 94 (2015), 241–253.
[3] Brunner, H. Collocation methods for Volterra integral and related func-tional equations, Cambridge University Press, 2004.
[4] Butcher, J.C. and Hojjati, G. Second derivative methods with RK sta-bility, Numer. Algorithms. 40 (2005), 415–429.
[5] Cash, J.R. Second derivative extended backward differentiation formulas for the numerical integration of stiff systems, SIAM J. Numer. Anal. 18 (1981), 21–36.
[6] D’Ambrosio, R., Ferro, M., Jackiewicz, Z. and Paternoster, B. Two-step almost collocation methods for ordinary differential equations, Numer. Algorithms. 53 (2010), 195–217.
[7] Enright, W.H. Second derivative multistep methods for stiff ordinary differential equations, SIAM. J. Numer. Anal. 7 (1974), 321–331.
[8] Fazeli, S. and Hojjati, G. Second derivative two-step collocation methods for ordinary differential equations, Appl. Numer. Math. 156 (2020), 514–527.
[9] Ferguson, D. Some interpol ation theorems for polynomials, J. Approx. Theory. 9 (1973), 327–348.
[10] Hairer, E.:
https://www.unige.ch/~hairer/testset/testset.html.
[11] Hairer, E., Norsett, S.P. and Wanner, G. Solving ordinary differential equations I: Nonstiff problems, Springer-Verlag. second revised edition, 1993.
[12] Hairer, C.L.E. and Wanner, G. Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Sec-ond Edition. Springer Series in Computational Mathematics 31, Springer-Verlag, 2006.
[13] Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II: Stiff and DifferentialAlgebraic Problems, Springer, Berlin, 2010.
[14] Lie, I. and Nørsett, S.P. Superconvergence for multistep collocation, Math. Comp. 52 (1989), 65–79.
[15] Liniger, W. and Willoughby, R.A. Efficient numerical integration of stiff systems of ordinary differential equations, Technical Report RC-1970, Thomas J. Watson Research Center, Yorktown Heihts, New York, 1976.
[16] Mazzia, F. and Magherini, C. Test set for initial value problem solvers, University of Bari. Italy, 2006.
[17] McLachlan, R.I. and Quispel, G.R.W. Geometric integrators for ODEs, J. Phys. A: Math. Gen. 39 (2006), 5251–5285.
[18] Schoenberg, I.J. On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538–543.
Send comment about this article