[1] Ahmad, I., Seadawy, I., Ahmad, H., Thounthong, P. and Wang, F. Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method, Int. J. Nonlinear Sci. Numer. Simul. 23(1) (2022), 115–122.
[2] Beggas, M. and Haiour, M. The maximum norm analysis of schwarz method for elliptic quasi-variationnal inequalities, Kragujevac Journal of Mathematics 45(5) (2021), 635–645.
[3] Belouafi, M-S. and Beggas, M. Maximum norm convergence of Newtonmultigrid methods for elliptic quasi-variational inequalities with nonlinear source terms, Adv. Math., Sci. J. 11(10) (2022), 969–983.
[4] Bencheikh, M.A. and Haiour, M. L∞-error analysis for parabolic quasivariational inequalities related to impulse control problems, Comput. Math. Model. 28 (2017), 89–108.
[5] Bencheikh, M.A., Boulaaras, S. and Haiour, M. An optimal L∞-error estimate for an approximation of a parabolic variational inequality, Numer. Func. Anal. Opt. 37(1) (2016), 1–18.
[6] Bensoussan, A. and Lions, J. Impulse control and quasi-variational inequalities, Gauthier Villars, Paris, 1984.
[7] Boulaaras, S. and Haiour, M. A new approach to asymptotic behavior for a finite element approximation in parabolic variational inequalities, Int. Sch. Res. Notices 2011 (2011).
[8] Boulaaras, S. and Haiour, M. L∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput. 217 (2011), 6443–6450.
[9] Boulaaras, S. and Haiour, M. The finite element approximation in parabolic quasivariational inequalities related to impulse control problem with mixed boundary conditions, J. Taibah Univ. Sci. 7(3) (2013), 105–113.
[10] Boulaaras, S. and Haiour, M. The finite element approximation of evolutionary Hamilton–Jacobi–Bellman equations with nonlinear source terms, Indag. Math. 24 (2013), 161–173.
[11] Boulaaras, S. and Haiour, M. The theta time scheme combined with a finite-element spatial, approximation in the evolutionary Hamilton–Jacobi–Bellman equation with linear source terms, Comput. Math. Model. 25(3) (2014), 423–438.
[12] Boulaaras, S. and Haiour, M. A new proof for the existence and uniqueness of the discrete evolutionary HJB equation, Appl. Math. Comput. 262 (2015), 42–55.
[13] Boulbrachene, M. and Chentouf, B. The finite element approximation of Hamilton–Jacobi–Bellman equations: The noncoercive case, J. Appl. Math. Comput. 158(2) (2004), 585–592. 1014
[14] Brandt, A. Algebraic multigrid theory: The symmetric case, Appl. Math. Comput. 19 (1986), 23–56.
[15] Brown, P.N., Vassilevski, P.S. and Woodward, C.S. On meshindependent convergence of an inexact Newton–multigrid algorithm, SIAM J. Comput. 25(2) (2003), 570–590.
[16] Ciarlet, P.G. and Raviart, P-A. Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2(1) (1973), 17–31.
[17] Cortey-Dumont, P. Approximation numérique d’une inéquation quasi variationnelle liée à des problèmes de gestion de stock, RAIRO. Anal. numér. 14(4) (1980), 335–346.
[18] Cortey-Dumont, P. On finite element approximation in the L∞norm of variational inequalities, Numer. Math. (Heidelb.), 47(1) (1985), 45–57.
[19] Hackbusch, W. Multi-grid methods and applications, Springer- Verlag (Springer Series in Computational Mathematics, Berlin and New York, 1985.
[20] Hackbusch, W. and Mittelmann, H-D. On multi-grid methods for variational inequalities, Numer. Math. (Heidelb.) 42(1) (1983), 65–76.
[21] Haiour, M. Etude de la convergence uniforme de la methode multigrilles appliquees aux problemes frontieres libres, PhD thesis, Universite de Annaba-Badji Mokhtar, 2004.
[22] Hoppe, H.W. Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numer. Math. (Heidelb.) 49(2) (1986), 239–254.
[23] Hoppe, H.W. Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal. 24(5) (1987), 1046–1065.
[24] Hoppe, H.W. Une méthode multigrille pour la solution des problèmes d’obstacle, ESAIM: Math. Model. Numer. Anal. 24(6) (1990), 711–735.
[25] Nesba, N-H. Beggas, M. Belouafi, M-S. Imtiaz, A. and Hijaz, A. Multigrid methods for the solution of nonlinear variational inequalities, Eur. J. Pure Appl. 16(3) (2023), 1956–1969.
[26] Reusken, A. On maximum norm convergence of multigrid methods for elliptic boundary value problems, SIAM J. Numer. Anal. 31(2) (1994), 378–392.
[27] Reusken, A. Introduction to multigrid methods for elliptic boundary value problems, Inst. Fur. Geometrie und Praktische Mathematik, 2008.
Send comment about this article