[1] Andargie, A. and Reddy, Y. Two initial value problems approach for solving singular perturbations problems, Am. J. Comput. Math. 2(03) (2012), 213–216.
[2] Bender, C.M. and Orsazag, S.A. Advanced mathematical methods for scientists and engineers, Springer, New York, 1999.
[3] Chakravarthy, P. and Reddy, Y.N. Exponentially fitted modified upwind scheme for singular perturbation problems, Int. J. Fluid Mech. Res. 33 (2006), 119–136.
[4] Gold, R.R. Magneto hydrodynamic pipe flow, Part I. J. Fluid Mech. 13 (1962), 505–512.
[5] Habib, H.M. and El-Zahar, E.R. An algorithm for solving singular perturbation problems with mechanization, Appl. Math. Comput. 188 (2007), 286–302.
[6] Hinch, E.J. Perturbation methods, Cambridge University Press, Cam-bridge, 1991.
[7] Holmes, M.H. Introduction to perturbation methods, Springer, Berlin, 1995.
[8] Jayakumar, J. and Ramanujam, N. A numerical method for singular perturbation problems arising in chemical reactor theory, Comput. Math. Appl. 27 (1994,) 83–99.
[9] Kadalbajoo, M.K. and Kumar, D. Initial value technique for singularly perturbed two point boundary value problems using an exponentially fitted finite difference scheme, Comput. Math. Appl. 57 (2009), 1147–1156.
[10] Kadalbajoo, M.K. and Kumar, D. A brief survey on numerical meth-ods for solving singularly perturbed problems, Appl. Math. Comput. 217 (2010), 3641–3716.
[11] Kevorkian, J. and Cole, J.D. Perturbation methods in applied mathemat-ics, 2nd Edition, Springer-Verlag, New York, 1981.
[12] Kumar, M. and Surabhi, T. An initial-value technique to solve third-order reaction-diffusion singularly perturbed boundary-value problems, Int. J. Comput. Math. 89(17) (2012), 2345–2352.
[13] Kumar, M., Singh, P. and Hradyesh Kumar, M. An initial-value tech-nique for singularly perturbed boundary value problems via cubic spline, Int. J. Comput. Methods Eng. Sci. Mech. 8(6) (2007), 419–427.
[14] Lorenz, J. Combinations of initial and boundary value methods for a class of singular perturbation problems, Numerical analysis of singular pertur-bation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978), pp. 295–315, Academic Press, London-New York, 1979.
[15] Madhu Latha, K., Phaneendra, K. and Reddy, Y.N. Numerical inte-gration with exponential fitting factor for singularly perturbed two point boundary value problems, British Journal of Mathematics & Computer Science 3(3) (2013), 397–414.
[16] Miller, J.J.H. Singular perturbation problems in chemical physics, ana-lytic and computational methods, XCVII Wiley, New York, 1997.
[17] Miller, J.J.H., Riordan, R.E.O. and Shishkin, G.I. Fitted numerical methods for singular perturbation problems, error estimates in the max-imum norm for linear problems in one and two dimensions, World Sci-entific, 1996.
[18] Mishra, H. and Saini, S. Numerical solution of singularly perturbed two-point boundary value problem via Liouville-Green transform, Am. J. Comput. Math. 3(1) (2013), 1–5.
[19] Nayfeh, A.H. Perturbation methods, John Wiley & Sons, Inc., New York, 1979.
[20] Nayfeh, A.H. Introduction to perturbation techniques, Wiley-VCH, New York, 1993.
[21] O’Malley, R.E. Introduction to singular perturbations, Academic Press, New York, 1974.
[22] O’Malley, R.E. Singular perturbation methods for ordinary differential equations, Applied Mathematical Sciences, 89, Springer, Berlin, 1990.
[23] Padmaja, P., Aparna, P. and Gorla, R.S.R. An initial-value technique for self-adjoint singularly perturbed two-point boundary value problems, Int. J. Appl. Mech. Eng. 25(1) (2020), 106–126.
[24] Phaneendra, K. and Lalu, M. Gaussian quadrature for two-point singu-larly perturbed boundary value problems with exponential fitting, Com-munications in Mathematics and Applications 10(3) (2019), 447–467.
[25] Ranjan, R. and Prasad, H.S. An efficient method of numerical integration for a class of singularly perturbed two point boundary value problems, WSEAS Trans. Math. 17 (2018), 265–273.
[26] Ranjan, R. and Prasad, H.S., A fitted finite difference scheme for solving singularly perturbed two point boundary value problems, Inf. Sci. Lett. 9(2), (2020), 65–73.
[27] Ranjan, R., Prasad, H.S. and Alam, J. A simple method of numerical integration for a class of singularly perturbed two point boundary value problems, i-manager’s Journal on Mathematics 7(1) (2018), 41.
[28] Roos, H.G., Stynes, M. and Tobiska, L. Numerical methods for singularly perturbed differential equations, Springer, Berlin 1996.
[29] Smith, D.R. Singular perturbation theory: An introduction with applica-tions, Cambridge University Press, Cambridge, 1985.
[30] Verhulst, F. Methods and applications of singular perturbations: Bound-ary layers and multiple timescale dynamics, Springer, Berlin 2005.
[31] Vigo-Aguiar, J. and Natesan, S. An efficient numerical method for singu-lar perturbation problems, J. Comput. Appl. Math., 192 (2006), 132–141.
Send comment about this article