Two numerical methods for nonlinear constrained quadratic optimal control problems using linear B-spline functions

Document Type : Research Article

Authors

1 Department of Mathematics, Payame Noor University, Tehran, Iran.

2 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

Abstract

This paper presents two numerical methods for solving the nonlinear constrained optimal control problems including quadratic performance index. The methods are based upon linear B-spline functions. The properties of B-spline functions are presented. Two operational matrices of integration are introduced for related procedures. These matrices are then utilized to reduce the solution of the nonlinear constrained optimal control to a nonlinear programming one to which existing well-developed algorithms may be applied. Illustrative examples are included to demonstrate the validity and applicability of the presented techniques.

Keywords


1. Avrile, M. Nonlinear programming: Analysis and Methods, Englewood Cli_s, NJ: Prentice-Hall, 1976.
2. Bellman, R. Dynamic Programming, Princeton, NJ: Princeton University Press, 1957.
3. Bellman, R., Kalaba, R. and Kotkin, B. Polynomial Approximation – A New Computational Technique in Dynamic Programming: Allocation Processes, Mathematics of Computation, 17(1963), 155-161.
4. Bellman, R. and Dreyfus, S. E. Applied Dynamic Programming, Princeton University Press, 1971.
5. Betts, J. Issues in the direct transcription of optimal control problem to sparse nonlinear programs, in: Bulirsch, R., Kraft, D. (Eds.), Computational Optimal Control, Germany: Birkhauser, 115(1994), 3-17.
6. Betts, J. Survey of numerical methods for trajectory optimization, J. Guidance Control Dynamics, 21(2) (1998), 193-207.
7. de Boor, C. A practical guide to spline, Springer Verlag, New York, 1978.
8. Chui, C.K. An introduction to wavelets, San Diego, Calif: Academic Press, 1992.
9. Elnegar, G.N. and Kazemi, M.A. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems, Comput. Optim. Applica. 11(1998), 195-217.
10. Foroozandeh, Z. and Shamsi, M. Solution of nonlinear optimal control problems by the interpolating scaling functions, Acta Astronautica, 72(2012), 21-26.
11. Gill, P.E. and Murray, W. Linearly constrained problems including linear and quadratic programming, In: Jacobs D, editor, The State of the Art in Numerical Analysis, London, New York: Academic Press, (1977), 313-363.
12. Gong, Q., Kang, W. and Ross, I.M. A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE Trans Automat Control, 51(7) (2006), 1115-1129.
13. Goswami, J.C. and Chan, A.K. Fundamentals of wavelets: theory, algorithms, and applications, John Wiley & Sons, Inc., 1999.
14. Hull, D.G. Optimal Control Theory for Applications, New York: Springer-Verlag, 2003.
15. Jaddu, H. Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials, Journal of the Franklin In stitute, 339 (2002), 479-498.
16. Jaddu, H. and Shimemura, E. Computation of optimal control trajectories using Chebyshev polynomials: parameterization and quadratic programming, Optimal Control Appl Methods, 20 (1999), 21-42.
17. Junkins, J.L. and Turner, J.D. Optimal Spacecraft Rotational Maneuvers, Amsterdam: Elsevier, 1986.
18. Kirk, D.E. Optimal control theory, Englewood Cli_s, NJ: Prentice Hall, 1970.
19. Kleiman, D.L., Fortmann, T. and Athans, M. On the design of linear systems with piecewise-constant feedback gains, IEEE Trans Automat Control, 13 (1968), 354-361.
20. Lancaster, P. Theory of Matrices, New York: Academic Press, 1969.
21. Lakestani, M., Dehghan, M. and Irandoust-pakchin, S. The constructionof operational matrix of fractional derivatives using B-spline functions, Commun Nonlinear Sci Numer Simulat, 17 (2012), 1149-1162.
22. Lakestani, M., Razzaghi, M. and Dehghan, M. Solution of nonlinear fredholm-hammerstein integral equations by using semiorthogonal spline wavelets, Hindawi Publishing Corporation Mathematical Problems in Engineering, 1 (2005), 113-121.
23. Lakestani, M., Razzaghi, M. and Dehghan, M. Semiorthogonal spline wavelets approximation for fredholm integro-di_erential equations, Hindawi Publishing Corporation Mathematical Problems in Engineering, 1
(2006), 1-12.
24. Leitman, G. The Calculus of Variations and Optimal Control, New York: Springer, 1981.
25. Marzban, H.R. and Razzaghi, M. Hybrid functions approach for linearly constrained quadratic optimal control problems, Appl Math Modell, 27(2003), 471-485.
26. Marzban, H.R. and Razzaghi, M. Rationalized Haar approach for nonlinear constrined optimal control problems, Appl Math Modell, 34 (2010), 174-183.
27. Marzban, H.R. and Hoseini, S.M. A composite Chebyshev _nite di_erence method for nonlinear optimal control problems, Commun Nonlinear Sci Numer Simulat, 18 (2013), 1347-1361.
28. Mashayekhi, S., Ordokhani, Y. and Razzaghi M. Hybrid functions approach for nonlinear constrained optimal control problems, Commun Nonlinear Sci Numer Simulat, 17 (2012), 1831-1843.
29. Ordokhani, Y. and Razzaghi, M. Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions, Dyn Contin Discrete Impul Syst Ser B, 12 (2005), 761-773.
30. Razzaghi, M. and Elnagar, G.Linear quadratic optimal control problems via shifted Legendre state parameterization , Internat. J. Systems Sci., 25(1994), 393-399.
31. Teo, K.L. and Wong, K.H. Nonlinearly constrained optimal control problems, J. Austral Math Soc. Ser B, 33 (1992), 507-530.
32. Yen, V. and Nagurka, M. Optimal control of linearly constrained linear systems via state parameterization, Optimal Control Appl Methods, 13(1992), 155-167.
CAPTCHA Image