[1] Adagbada, A.O., Adesida, S.A., Nwaokorie, F.O., Niemogha, M.T. and Coker, A.O. Cholera epidemiology in Nigeria: an overview. Pan Afr. Med. J. 12(1) (2012).
[2] Ahmad, M.Z., Alsarayreh, D., Alsarayreh, A. and Qaralleh, I. Differ-ential transformation method (DTM) for solving SIS and SI epidemic models. Sains Malays. 46 (10) (2017) 2007–2017.
[3] Akinboro, F.S., Alao, S. and Akinpelu, F.O. Numerical solution of SIR model using differential transformation method and variational iteration method. General Mathematics Notes 22(2) (2014) 82–92.
[4] Batiha, K. and Batiha, B. A new algorithm for solving linear ordinary differential equations. World Appl. Sci. J. 15 (12) (2011) 1774–1779.
[5] Chakraborty, A.K., Shahrear, P. and Islam, M.A. Analysis of epidemic model by differential transform method. J. Multidiscip. Eng. Sci. Technol. 4(2) (2017) 6574–6581.
[6] CCodeço, C.T., Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1 (2001) 1–14.
[7] Edwards, C.H. and Penney, D.E. Differential equations and boundary value problems: computing and modeling. Pearson Educación. 2000.
[8] Edward, S. and Nyerere, N. A mathematical model for the dynamics of cholera with control measures. Comput. Appl. Math. 4(2) (2015) 53–63.
[9] Egbetade, S.A. and Ibrahim, M.O. Modelling the Impact of BCG vac-cines on tuberculosis epidemics. Journal of Mathematical Modelling and Application, 9(1) (2014) 49–55.
[10] Elhia, M., Laaroussi, A., Rachik, M., Rachik, Z. and Labriji, E., Global stability of a susceptible-infected-recovered (SIR) epidemic model with two infectious stages and treatment. Int. J. Sci. Res. 3(5) (2014) 114–121.
[11] Harris JB, LaRoque RC, Qadri F, Ryan ET, Calderwood SB. Seminar, The Lancet 2012.
[12] Jahan, S., Cholera–epidemiology, prevention and control. Significance, Prevention and Control of Food Related Diseases. Croatia: InTech, (2016) 145–157.
[13] Javidi, M. and Ahmad, B., A study of a fractional-order cholera model. Appl. Math. Inf. Sci. 8(5) (2014) p.2195.
[14] Kenmogne, F. Generalizing of differential transform method for solving nonlinear differential equations. J. Appl. Comp. Math. 4 (2015) p.196.
[15] Mafuta, P., Mushanyu, J. and Nhawu, G. Invariant region, endemic equilibria and stability analysis. IOSR J. Math. 10(2) (2014) 118–120.
[16] Madubueze, C.E., Kimbir, A.R., Onah, E.S. and Aboiyar, T., Existence and uniqueness of solution of ebola virus disease model with contact tracing and quarantine as controls. Nigerian J. Math. Appl. 25 (2016) 111–121.
[17] Merrell, D.S., Butler, S.M., Qadri, F., Dolganov, N.A., Alam, A., Cohen, M.B., Calderwood, S.B., Schoolnik, G.K. and Camilli, A., Host-induced epidemic spread of the cholera bacterium. Nature, 417(6889) (2002) 642–645.
[18] Mirzaee, F., Differential transform method for solving linear and non-linear systems of ordinary differential equations. Appl. Math. Sci. 5(70) (2011) 3465–3472.
[19] Najafgholipour, M. and Soodbakhsh, N., Modified differential transform method for solving vibration equations of MDOF systems. Civil Eng. J. 2(4) (2016) 123–139.
[20] Nelson, E.J., Harris, J.B., Glenn Morris Jr, J., Calderwood, S.B. and Camilli, A., Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat. Rev. Microbiol. 7(10) (2009) 693–702.
[21] Ochoche, M.J., Madubueze, E.C. and Akaabo, T.B., A mathematical model on the control of cholera: hygiene consciousness as a strategy. J. Math. Comput. Sci. 5(2) (2015) 172–187.
[22] Panja, P. and Mondal, S.K., A mathematical study on the spread of Cholera. South Asian J. Math. 4(2) (2014) 69–84.
[23] Patil, N. and Khambayat, A., Differential transform method for ordinary differential equations. Res. J. Math. Stat. Sci. 3 (2014) 330–337.
[24] Penrose, K., Castro, M.C.D., Werema, J. and Ryan, E.T., Informal urban settlements and cholera risk in Dar es Salaam, Tanzania. PLoS Negl. Trop. Dis. 4(3) (2010) p.e631.
[25] Todar K. Online Textbook of Bacteriology. www.onlinetextbookofbacteriology.net 2008.
[26] Tuite, A.R., Chan, C.H. and Fisman, D.N., Cholera, canals, and conta-gion: Rediscovering Dr Beck’s report. J. Public Health Policy, 32 (2011) 320–333.
[27] Uwishema, O., Okereke, M., Onyeaka, H., Hasan, M.M., Donatus, D., Martin, Z., Oluwatomisin, L.A., Mhanna, M., Olumide, A.O., Sun, J. and Adanur, I., Threats and outbreaks of cholera in Africa amidst COVID-19 pandemic: a double burden on Africa’s health systems. Trop-ical medicine and health, 49(1) (2021) p.93.
[28] Wang, X. and Wang, J., Analysis of cholera epidemics with bacterial growth and spatial movement. J. Biol. Dyn. 9(sup1) (2015) 233–261.
[29] Wang, J., Mathematical models for cholera dynamics—A review. Mi-croorganisms, 10(12) (2022) p.2358.
[30] Soltanalizadeh, B. and Branch, S., Application of differential transfor-mation method for solving a fourth-order parabolic partial differential equations. Int. J. Pure Appl. Math. 78(3) (2012) 299–308.
[31] Munganga, J.M.W., Mwambakana, J.N., Maritz, R., Batubenge, T.A. and Moremedi, G.M., Introduction of the differential transform method to solve differential equations at undergraduate level. Int. J. Math. Educ. Sci. Technol. 45(5) (2014) 781–794.
[32] Saeed, R.K. and Rahman, B.M., Differential transform method for solv-ing system of delay differential equation. Aust. J. Basic Appl. Sci. 5(4) (2011) 201–206.
Send comment about this article