Quantum solutions of a nonlinear Schrödinger equation

Document Type : Research Article

Authors

1 Laboratory of Algebra, Number Theory and Nonlinear Analysis, Department of Math-ematics, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia.

2 nstitut Supérieur d’Informatique du Kef, Université de Jendouba, 5 Rue Saleh Ayech - 7100 Kef, Tunisia

3 Laboratory of Algebra, Number Theory and Nonlinear Analysis, Department of Math- ematics, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia.

4 Department of Mathematics, Higher Institute of Applied Mathematics and Computer Science, University of Kairouan, Street Assad Ibn Alfourat, Kairouan 3100, Tunisia.

5 Department of Mathematics, Faculty of Sciences, University of Tabuk, King Faisal Road, Tabuk 47512, Saudi Arabia.

10.22067/ijnao.2023.84855.1324

Abstract

In the present paper, we precisely conduct a quantum calculus method for the numerical solutions of PDEs. A nonlinear Schrödinger equation is considered. Instead of the known classical discretization methods based on the finite difference scheme, Adomian method, and third modified ver-sions, we consider a discretization scheme leading to subdomains according to q-calculus and provide an approximate solution due to a specific value of the parameter q. Error estimates show that q-calculus may produce effi-cient numerical solutions for PDEs. The q-discretization leads effectively to higher orders of convergence provided with faster algorithms. The numer-ical tests are applied to both propagation and interaction of soliton-type solutions.

Keywords

Main Subjects


[1] Ablowitz, M.J., Prinari, B. and Trubatch, A.D. Discrete and continu-ous nonlinear Schrödinger systems, Cambridge Univ. Press, Cambridge, 2004.
[2] Akheizer, N.I. The classical moment problem and some related questions in analysis, Oliver & Boyd, 1965.
[3] Annaby, M.H.and Mansour, Z.S. q-fractional calculus and equations, Lecture Notes in Mathematics 2056, Editors: J.-M. Morel and B. Teissier, Springer 2012.
[4] Avron, J., Herbst, I. and Simon, B. Schrödinger operators with electro-magnetic fields, III. Atoms in homogeneous magnetic field, Commun. Math. Phys. 79 (1981), 529–572.
[5] Ben Mabrouk, A. and Ayadi, M. A linearized finite-difference method for the solution of some mixed concave and convex nonlinear problems, Appl. Math. Comput. 197 (2008), 1–10.
[6] Ben Mabrouk, A. and Ayadi, M. Lyapunov type operators for numerical solutions of PDEs, Appl. Math. Comput. 204 (2008), 395–407.
[7] Ben Mabrouk, A., Ben Mohamed, M.L. and Omrani, K. Finite difference approximate solutions for a mixed sub-superlinear equation, Appl. Math. Comput. 187 (2007), 1007–1016.
[8] Berezanskii, Y.M. Expansion in eigenfunction of self-adjoint operators, AMS, Providence, RI, 1968.
[9] Bezia, A., Ben Mabrouk, A. and Betina, K. Lyapunov-Sylvester oper-ators for (2 + 1)-Boussinesq equation, Electron. J. Differ. Equ. 2016 (2016), 1–19.
[10] Bratsos, A.G. A linearized finite-difference method for the solution of the nonlinear cubic Schrödinger equation, Comm. Appl. Analysis 4(1) (2000), 133–139.
[11] Bratsos, A.G. A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation, Korean J. Comput. Appl. Math. 8(3) (2001), 459–467.
[12] Bratsos, A.G., Tsituras, Ch. and Natsis, D.G. Linearized numerical schemes for the Boussinesq equation, Appl. NUm. Anal. Comp. Math. 2(1) (2005), 34–53.
[13] Byeon, J. and Wang, Z.Q. Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Analysis 165 (2002), 295–316.
[14] Chteoui, R. and Ben Mabrouk, A. A generalized Lyapunov-Sylvester computational method for numerical solutions of NLS equation with sin-gular potential, Anal. Theory Appl. 33 (2017), 333–354.
[15] Chteoui, R., Ben Mabrouk, A. and Ounaiess, H. Existence and properties of radial solutions of a sub-linear elliptic equation, J. Part. Diff. Eq. 28 (1) (2015), 30–38.
[16] Delfour, M., Fortin, M. and Payre, G. Finite difference solutions of a non-linear Schrödinger equation, J. Computa. Phys. 44 (1981), 277–288.
[17] Floer, A. and Weinstein, A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408.
[18] Gasper, G. and Rahman, M. Basic Hypergeometric serie, Second edition, Cambridge University Press, 2004.
[19] Grillakis, M.G. On nonlinear Schrödinger equations, Commun. Partial. Differ. Equations. 25 (2000), 1827–1844.
[20] Hasegawa, A. and Kodama, Y. Solitons in optical communications, Aca-demic Press, San Diego, 1995.
[21] Kac, V. and Cheung, P. Quantum calculus, Springer, 2002.
[22] Lamb, G.L. Elements of soliton theory, Wiley, 1980.
[23] Malomed, B.A. Variational methods in nonlinear fiber optics and related fields, Progress in Optics 43 (2002), 69–191.
[24] Oh, Y.G. Existence of semi classical bound states of nonlinear Schrödinger equations with potentials of the class (Va), Commun. Partial Differ. Equ. 13 (1988), 1499–1519.
[25] Onorato, M., Osborne, A.R., Serio, M. and Bertone, S. Freak waves in random oceanic sea states, Phys. Rev. Lett. 86 (2001), 5831–5834.
[26] Sulem, C. and Sulem, P.-L. The nonlinear Schrödinger equation: Self-focusing and wave collapse, Applied Mathematical Sciences, Vol. 139, Springer-Verlag, New York, 1999.
[27] Teschl, G. Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72. American Mathematical So-ciety, Providence, RI, 2000.
[28] Twizell, E.H., Bratsos, A.G. and Newby, J.C. A finite-difference method for solving the cubic Schrödinger equation, Computation of nonlinear phenomena. Math. Comput. Simulation 43 (1997), 67–75.
[29] Zakharov, V.E. Collapse and self-focusing of Langmuir waves, Handbook of Plasma Physics, (M. N. Rosenbluth and R. Z. Sagdeev, eds.), vol. 2 (A. A. Galeev and R. N. Sudan, eds.) 81–121, Elsevier, 1984.
CAPTCHA Image