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Abstract
This paper studies the linear optimization problem subject to a system of
bipolar fuzzy relation equations with the max-product composition oper-
ator. Its feasible domain is briefly characterized by its lower and upper
bound, and its consistency is considered. Also, some sufficient conditions
are proposed to reduce the size of the search domain of the optimal solution
to the problem. Under these conditions, some equations can be deleted to
compute the minimum objective value. Some sufficient conditions are then
proposed which under them, one of the optimal solutions of the problem is
explicitly determined and the uniqueness conditions of the optimal solution
are expressed. Moreover, a modified branch-and-bound method based on a
value matrix is proposed to solve the reduced problem. A new algorithm is
finally designed to solve the problem based on the conditions and modified
branch-and-bound method. The algorithm is compared to the methods in
other papers to show its efficiency.
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1 Introduction

Sanchez [31] has firstly studied Fuzzy Relation Equations (FREs) and their
associated problems. Then, many researchers investigated them from a the-
oretical standpoint and in view of applications [26, 28, 32].
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Various approaches were designed to solve a system of FREs such as
the algebraic method [21], the matrix pattern method [25], the universal
algorithm [27], and the improved Lichun and Boxing’s method [39]. A com-
prehensive review of their resolution methods has been expressed in [7] and
references therein. An extended kind of FREs is a system of fuzzy Relation
Inequalities (FRIs), which its solution set can be completely determined by
finding its minimal solutions and maximum solution similar to FREs [16].
Their applications can be seen in the supply chain [38] and Peer-to-Peer data
transmission network system [22, 36, 4].

The above FREs and FRIs are increasing in each of the variables. In some
applications, for example, in an application of product public awareness in
revenue management, we need variables with a bipolar characterization [9].
Some researchers introduced such bipolarity effects with the max-min compo-
sition operator in the application [9]. Li and Jin [19] showed that checking the
consistency of the system of bipolar max-min FREs is NP-complete. There-
fore, the resolution of the linear optimization problem with constraints of
bipolar FREs will be NP-hard. Yang [37] proposed a bipolar path approach
to finding the complete solution set of the system. The characterization of the
solvability of bipolar max-product FREs was investigated with the standard
negation [5] and the product negation [6].

The optimization of objective functions with FRE constraints is an inter-
esting research topic [8, 14, 17, 24, 29, 30, 33, 34, 35]. Fang and Li [8] firstly
studied the linear programming problem provided to a system of the max-
min FREs. They proposed an algorithm based on the branch-and-bound
method with the jump-tracking technique for its resolution. The algorithm
was extended to the problem with the max-product composition operator
in [24]. Wu, Guu, and Liu, [35] improved their approach by designing an
efficient procedure. In the procedure, the branch-and-bound method was ap-
plied based on an upper bound for its optimal objective value. Hence, the
procedure checks much fewer nodes to find the optimal solution with respect
to Fang and Li’s approach. A necessary condition has been given to find an
optimal solution to the problem with the max-min [34] and the max-product
[14] composition operator. Then, the necessary condition was extended for
fuzzy relation programming problem with the max-strict-t-norm composi-
tion [33]. Three rules were presented to simplify the process of finding the
optimal solution based on the necessary condition [34]. Li and Fang [17] in-
vestigated the resolution and optimization of a system of FREs with Sup-T
composition, and they generalized the most known results in literature and
provided a unified framework for the resolution and optimization of the Sup-
T equation. Recently, fuzzy relation programming was extended to optimize
separable functions in [15]. Different kinds of fuzzy relation programming
have appeared like the max-min fuzzy relation programming problem with
the addition-min FRIs [4], linear optimization with the addition-min FRIs
[12], and fuzzy relation lexicographic programming [40]. Recently, Zhou et
al. [41] considered the problem of optimizing a nonlinear objective function
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subject to a system of bipolar FREs with the max-Lukasiewicz triangular
norm composition. They equivalently converted the problem to a 0-1 mixed
nonlinear integer programming problem. It is NP-hard, and its resolution has
high computational complexity. To increase the efficiency of algorithms, re-
searchers focused on special classes of the bipolar fuzzy relation programming
problems. Two important classes from the problem are linear [9, 20, 23, 3]
and geometric [1, 2] with bipolar FRE constraints. For the first time, Freson,
De Baets, and De Meyer [9] formulated the system of bipolar max-min FREs.
They obtained the solution set of each of its equations. Using this point, they
determined the solution set of a system of bipolar max-min FREs. This set
can be characterized by a finite set of maximal and minimal solution pairs.
They then studied the linear optimization problem subject to the system with
a potential application of product public awareness in revenue management.
They also found its optimal solutions based on the structure of the solution
set of the system. Li and Liu [20] considered the problem with the max-
Lukasiewicz t-norm. They converted the problem into a 0-1 integer linear
optimization problem and solved it by using integer optimization techniques.
However, the techniques may involve a high computational complexity. To
overcome the point, Liu, Lur, and Wu [23] used the useful property that each
component of an optimal solution can either be the corresponding component
of lower or upper bound value and they proposed a simple value matrix with
some simplification rules to reduce the dimensions of the original problem.
To improve computational efficiency, some other rules were presented for
more reduction of the dimensions of the problem with the max-parametric
Hamacher composition operator in [3]. With regard to the above points, a
modified branch-and-bound method was designed for the resolution of the
problem in [3].

In this paper, the problem with the max-product operator is investigated.
Its simplification procedures are completely different from the rules in [23, 3].
The motivations of this paper are the answers to the following questions:
1- How do we can detect and remove the redundancy constraints in the bipo-
lar FRE system?
2- What are the sufficient conditions of optimality for a feasible solution to
the original problem?
3- What are the sufficient conditions for the uniqueness of the optimal solu-
tion to the original problem?
4- How can we design an efficient algorithm to solve the original problem
with respect to the answers to questions 1 and 2?
To find the answers to the above questions, two characteristic matrices are
defined based on the components of lower and upper bound vector. Some
sufficient conditions are presented to remove some equations. Moreover, some
sufficient conditions are proposed which under them, one of the optimal so-
lutions of the problem is determined. Then, the sufficient conditions for the
uniqueness of the optimal solution are expressed. Furthermore, a modified
branch-and-bound method based on a value matrix is designed to solve the
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reduced problem. A new algorithm is proposed to solve the original problem
based on the conditions and modified branch-and-bound method.

The structure of this paper is organized as follows: Section 2 introduces
the linear optimization problem subject to bipolar max-product FREs. We
also investigate the characterizations of its feasible domain. In Section 3,
the optimality conditions are presented for a feasible solution to the problem
and some theorems are given to simplify and reduce the problem. Section 4
proposes an algorithm to solve the problem. Some numerical examples are
presented to illustrate the algorithm in Section 5. A comparative study is
done with other methods to show the efficiency of the algorithm in Section
6. Finally, conclusions are given in Section 7.

2 Linear programming problem with bipolar
max-product FREs

This section is divided into two subsections. In the first subsection, the
linear programming problem subject to bipolar FREs is formulated. The
characterizations of its feasible domain are finally illustrated in the second
subsection.

2.1 Formulation of the problem

Let A+ = (a+ij) and A− = (a−ij) be two m × n fuzzy relation matrices with
0 ≤ a+ij , a

−
ij ≤ 1 for each i ∈ I = {1, 2, . . . ,m} and j ∈ J = {1, 2, . . . , n}.

Also, assume that b = (b1, . . . , bm)T ∈ [0, 1]m and that c = (c1, . . . , cn) is a
vector of cost coefficients, where cj ≥ 0 for each j ∈ J . In this paper, the
following programming problem is considered:

min Z(x) =

n∑
j=1

cjxj , (1)

s.t. A+ ◦ x ∨A− ◦ ¬x = b, (2)

where x = (x1, . . . , xn)
T ∈ [0, 1]n is the vector of decision variables to

be determined and ¬x denotes the negation of x, that is, ¬x = (1 −
x1, . . . , 1 − xn)

T . The operator of “◦” represents the max-Tp composi-
tion, where Tp denotes the product operator. Moreover, S(A+, A−, b) =
{x ∈ [0, 1]n | A+ ◦ x ∨A− ◦ ¬x = b}, which consists of a set of solution vec-
tors x ∈ [0, 1]n such that

max
j∈J

max
{
a+ij .xj , a

−
ij . (1− xj)

}
= bi for all i ∈ I. (3)
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Problem (1)–(2) with the real cost coefficients can be converted to a prob-
lem with nonnegative cost coefficients in a similar method to Subsection 3.3
in [9]. Hence, without loss of generality, we assume that cj ≥ 0 for each
j ∈ J .

2.2 The structure of the feasible domain of problem
(1)–(2)

A system of bipolar max-Tp FREs A+ ◦ x ∨A− ◦ ¬x = b is called consistent
if its solution set, that is, S(A+, A−, b), is nonempty. Otherwise, it is in-
consistent. Now, we focus on the system of bipolar max-Tp FREs (3), when
S(A+, A−, b) ̸= ∅.

Lemma 1. A vector x ∈ [0, 1]n is a solution for the system of bipolar max-
Tp FREs (3) if and only if max

{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi for all i ∈ I

and j ∈ J , and for each i ∈ I, there exists an index ji ∈ J such that
max

{
a+iji .xji , a

−
iji

. (1− xji)
}
= bi.

Proof. It is obvious.

Remark 1. For any a+ij , a
−
ij , and bi with i ∈ I and j ∈ J , it is assumed that

if a−ij = 0, then we define max{1− bi
a−
ij

, 0} = 0. Also, if a+ij = 0, then we

define min{ bi
a+
ij

, 1} = 1.

Lemma 2. For any a+ij , a
−
ij , and bi with i ∈ I and j ∈ J , the inequality of

max
{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi holds if and only if max{1 − bi

a−
ij

, 0} ≤ xj ≤

min{ bi
a+
ij

, 1}. Especially, if max
{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi = 0, then at least

one of two statements a+ij = 0 or a−ij = 0 holds. According to Remark 1,
max

{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi = 0 if and only if max{1 − bi

a−
ij

, 0} ≤ xj ≤

min{ bi
a+
ij

, 1}.

Proof. The proof will be divided into four cases as follows:

Case 1. a+ij ̸= 0 and a−ij ̸= 0.

Case 2. a+ij = a−ij = 0.

Case 3. a+ij = 0 and a−ij ̸= 0.

Case 4. a+ij ̸= 0 and a−ij = 0.
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Case 1. It is obvious that the inequality max
{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi

holds if and only if a+ij .xj ≤ bi and a−ij .(1 − xj) ≤ bi. If bi ̸= 0, then the
recent inequalities can equivalently be rewritten as 1 − bi

a−
ij

≤ xj ≤ bi
a+
ij

. On
the other hand, according to the assumption, we have 0 ≤ xj ≤ 1. The
inequalities are equivalently concluded max{1 − bi

a−
ij

, 0} ≤ xj ≤ min{ bi
a+
ij

, 1}.
Whenever bi = 0, the inequalities imply xj ≤ 0 and xj ≥ 1 which do not hold
for any xj ∈ [0, 1].
Case 2. Since a+ij = a−ij = 0 and bi ≥ 0, the inequality of max{a+ij .xj , a

−
ij .(1−

xj)} ≤ bi holds if and only if xj ∈ [0, 1]. On the other hand, we have
max{1 − bi

a−
ij

, 0} = 0 and min{ bi
a+
ij

, 1} = 1 with regard to Remark 1. Conse-
quently, the result is also true in this case.
Case 3. Since a+ij = 0, then min{ bi

a+
ij

, 1} = 1 with regard to Remark 1.
We now have the following subcases: 1. bi = 0 and 2. bi ̸= 0. In the
first subcase, we have max{1 − bi

a−
ij

, 0} = 1, that is, max{1 − bi
a−
ij

, 0} ≤

xj ≤ min{ bi
a+
ij

, 1} implies that xj = 1. On the other hand, the inequal-
ity max

{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi = 0 holds if and only if a−ij .(1 − xj) =

0. This implies that xj = 1. In the second subcase, the inequality of
max

{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi holds if and only if a−ij .(1− xj) ≤ bi, which is

equivalent to max{1− bi
a−
ij

, 0} ≤ xj . On the other hand, we have 0 ≤ xj ≤ 1.

This implies that max{1 − bi
a−
ij

, 0} ≤ xj ≤ 1 = min{ bi
a+
ij

, 1} with regard to
Remark 1. Hence, the result is true in both subcases.

Whenever S(A+, A−, b) ̸= ∅, the lower and upper bound on the solution
set for the system of equations (3) can be determined using the following
lemma.

Lemma 3. [1] The vector of x̌ = (x̌1, . . . , x̌n)
T is the lower bound on the

solution set of equations (3), where x̌j = max
i∈I

{1− bi
a−
ij

| a−ij > bi} for each
j ∈ J. Also, the vector of x̂ = (x̂1, . . . , x̂n)

T is the upper bound on the
solution set of equations (3), where x̂j = min

i∈I
{ bi
a+
ij

| a+ij > bi}, for each j ∈ J.

Furthermore, if there exists j ∈ J such that for each i ∈ I, a−ij ≤ bi, then
x̌j = 0 and if there exists j ∈ J such that for each i ∈ I, a+ij ≤ bi, then
x̂j = 1, that is, max ∅ = 0 and min ∅ = 1 are defined.

Lemma 4. [1] Assume that S(A+, A−, b) ̸= ∅ and that its lower and upper
bound are x̌ and x̂, respectively. If there exists j0 ∈ J such that x̌j0 = x̂j0 ,
then xj0 = x̌j0 = x̂j0 for all x ∈ S(A+, A−, b). Also, the solution set of
system (2) (or (3)) is the same to the following system:{

max
j∈J−{j0}

max
{
a+ij .xj , a

−
ij .(1− xj)

}
= bi for all i ∈ I − I,

x̌j ≤ xj ≤ x̂j for all j ∈ J − {j0}; xj0 = x̌j0 = x̂j0 ,
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where x̌j and x̂j for all j ∈ J are defined on the basis of system (2) (or (3))
and I =

{
i ∈ I|max{a+ij0 .xj0 , a

−
ij0

.(1− xj0)} = bi
}

and I ̸= ∅.

We first consider the special case of bi = 0 for i ∈ I. Since
max

{
a+ij .xj , a

−
ij . (1− xj)

}
is always nonnegative, the following inequality

max{a+ij .xj , a
−
ij .(1− xj)} ≤ bi can be converted into the equation

max
{
a+ij .xj , a

−
ij . (1− xj)

}
= bi. We now express the following lemma.

Lemma 5. Let bi = 0 for i ∈ I. A vector x is a solution for ith equation
of the system (3) if and only if max{1 − bi

a−
ij

, 0} ≤ xj ≤ min{ bi
a+
ij

, 1} for each
j ∈ J .

Proof. Considering Remark 1, the proof can be easily obtained by the proofs
of Lemmas 1 and 2.

Lemma 6. [1] Suppose that S(A+, A−, b) ̸= ∅, and that its lower and upper
are x̌j and x̂j , respectively. Then the solution set of system (2) (or (3)) is
the same to the following system:{

max
j∈J

max{a+ij .xj , a
−
ij .(1− xj)} = bi for all i ∈ I − I0,

x̌j ≤ xj ≤ x̂j for all j ∈ J,

where I0 = {i ∈ I|bi = 0}. Also, x̌j and x̂j , for all j ∈ J , are defined on the
basis of system (2) (or (3)).

Furthermore, if bi = 0 for each i ∈ I, then we can easily obtain the
solution set of equations (3) and an optimal solution for problem (1)–(2).
These points are expressed in the following corollary.

Corollary 1. If b = 0 in the constraint part of problem (1)–(2), then we
have
S(A+, A−, b) = {x | x̌ ≤ x ≤ x̂} and x∗ = x̌ is an optimal solution to problem
(1)-(2).

Proof. It can be easily seen that S(A+, A−, b) = {x | x̌ ≤ x ≤ x̂} with
regard to Lemmas 3 and 5. The proof is completed by showing that x∗ = x̌
is an optimal solution of problem (1)–(2). Since x̌ ∈ S(A+, A−, b), c ≥ 0,
and the problem is minimization, then x̌ is an optimal solution of problem
(1)–(2).

Without loss of generality, from now on, we will assume that x̌j < x̂j , for
each j ∈ J, and bi > 0, for each i ∈ I.

Remark 2. In this paper, if a+ij = a−ij = 0, then we define a+
ij .a

−
ij

a+
ij+a−

ij

= 0.
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Figure 1: Illustration of function f(xj) = max{a+ij .xj , a
−
ij .(1− xj)}

Lemma 7. For any a+ij , a
−
ij , and bi with i ∈ I and j ∈ J , the equation of

max
{
a+ij .xj , a

−
ij . (1− xj)

}
= bi has a solution if and only if a+

ij .a
−
ij

a+
ij+a−

ij

≤ bi ≤

max{a+ij , a
−
ij}. Also, its solution set is determined with regard to the following

cases:
Case 1: If a−ij < bi ≤ a+ij , then S(a+ij , a

−
ij , bi) =

{
min

(
bi
a+
ij

, 1

)}
;

Case 2: If a+ij < bi ≤ a−ij , then S(a+ij , a
−
ij , bi) =

{
max

(
1− bi

a−
ij

, 0

)}
;

Case 3: If a+
ij .a

−
ij

a+
ij+a−

ij

≤ bi ≤ min
{
a+ij , a

−
ij

}
, then

S(a+ij , a
−
ij , bi) =

{
max

(
1− bi

a−
ij

, 0

)
,min

(
bi
a+
ij

, 1

)}
.

Proof. For given a+ij , a
−
ij ∈ [0, 1], and bi > 0, the range of the function of

max
{
a+ij .xj , a

−
ij . (1− xj)

}
and the solution set of S(a+ij , a

−
ij , bi) can be ob-

served from Figure 1 and determined, easily.

Note that the vectors of x̌ and x̂ are only the lower and upper bound on the
solution set of equations (3), respectively. They are not necessarily feasible
solutions to the system of equations (3). Moreover, we have S(A+, A−, b) ⊆
{x | x̌ ≤ x ≤ x̂}. Considering Lemmas 3 and 7, each equation in system (3)
can be satisfied by x̌j or x̂j . In order to store these facts, the characteristic
matrices of Q+ and Q− are defined below.

Definition 1. Define two characteristic matrices Q+ = (q+ij)m×n and Q− =

(q−ij)m×n such that for each i ∈ I and j ∈ J , we have

q+ij =

{
1 if a+ij .x̂j = bi,
0 otherwise,

and q−ij =

{
1 if a−ij .(1− x̌j) = bi,

0 otherwise.

Also, a series of index sets is defined as follows.
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Definition 2. (i) [1] For the matrix Q+, define

I+j (x) = {i ∈ I | xj = x̂j and q+ij = 1} and J+
i (x) = {j ∈ J | xj = x̂j and q+ij = 1}.

Also, for the matrix Q−, define

I−j (x) = {i ∈ I | xj = x̌j and q−ij = 1} and J−
i (x) = {j ∈ J | xj = x̌j and q−ij = 1},

for each i ∈ I and j ∈ J . Furthermore, let Ij(x) = I+j (x) ∪ I−j (x), for each
j ∈ J .
(ii) Let I+j = I+j (x̂), J+

i = J+
i (x̂), let I−j = I−j (x̌), and let J−

i = J−
i (x̌), for

each i ∈ I and j ∈ J .

Considering Lemmas 2 and 7 and the above concepts, we present a nec-
essary and sufficient condition for the solution of system (3) (or (2)).

Theorem 1. A vector x ∈ [0, 1]n is a solution for the system of bipolar max-
Tp FREs A+ ◦ x ∨A− ◦ ¬x = b if and only if x̌ ≤ x ≤ x̂ and

∪
j∈J

Ij(x) = I.

Proof. With regard to Lemma 1, we show that x̌ ≤ x ≤ x̂ and
∪
j∈J

Ij(x) = I

if and only if max
{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi, for all i ∈ I and j ∈ J , and for

each i ∈ I there exists an index ji ∈ J such that
max

{
a+iji .xji , a

−
iji

. (1− xji)
}
= bi. Considering Lemmas 2 and 3, all the in-

equalities max
{
a+ij .xj , a

−
ij . (1− xj)

}
≤ bi, for i ∈ I and j ∈ J , hold if and

only if x̌ ≤ x ≤ x̂. We now focus on proving
∪
j∈J

Ij(x) = I. The equality

is true if and only if for each i ∈ I, there exists an index ji ∈ J such that
max

{
a+iji .xji , a

−
iji

. (1− xji)
}

= bi. Since Ij(x) = I+j (x) ∪ I−j (x), for each
j ∈ J , we have

∪
j∈J

Ij(x) = I if and only if
∪
j∈J

(I+j (x)∪ I−j (x)) = I. Moreover,

we have
∪
j∈J

(I+j (x) ∪ I−j (x)) = I if and only if for each i ∈ I there exists an

index ji ∈ J such that (xji = x̂ji & q+iji = 1) or (xji = x̌ji & q−iji = 1), with re-
gard to Definition 2. By Definition 1 and Lemma 7, it can easily be seen that
for each i ∈ I, there exists an index ji ∈ J such that (xji = x̂ji & q+iji = 1) or
(xji = x̌ji & q−iji = 1) if and only if max

{
a+iji .xji , a

−
iji

. (1− xji)
}
= bi.

For each j ∈ J , label the values of x̂j and x̌j with boolean variables of
yj and ¬yj , respectively. The following theorem is used to determine the
consistency of system A+ ◦ x ∨A− ◦ ¬x = b.

Theorem 2. A system of bipolar max-Tp FREs A+ ◦ x ∨ A− ◦ ¬x = b
is consistent if and only if its characteristic boolean formula C =

∧
i∈I

Ci is

well-defined and satisfiable, where Ci =
∨

j∈J+
i

yj ∨
∨

j∈J−
i

¬yj .
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Proof. With regard to Definitions 1 and 2, the proof is similar to the proof
of Theorem 2.5 in [18]

Theorem 3. Let x̌ and x̂ be the lower and upper bound, respectively. Then

Ij(x) ⊆ I+j ∪ I−j , for all x ∈ S(A+, A−, b), for all j ∈ J.

Exactly, we have Ij(x)=I+j (when xj = x̂j) or Ij(x)=I−j (when xj = x̌j) or
Ij(x) = ∅ (when x̌j < xj < x̂j).

Proof. The proof is obtained from Definitions 1 and 2.

We are now ready to present some theorems to simplify problem (1)–(2)
in the next section.

3 Some optimality sufficient conditions for problem
(1)–(2)

This section studies some optimality conditions for problem (1)–(2). One of
its optimal solutions is found under the conditions. Moreover, some sufficient
conditions are proposed to guarantee its uniqueness, and a closed form is
proposed to determine it. In this section, it is assumed that S(A+, A−, b) ̸= ∅.
The following lemma presents a useful property of the optimal solution of
problem (1)–(2).

Lemma 8. Consider the optimization problem of (1)–(2). Then there exists
an optimal solution x∗ = (x∗

1, . . . , x
∗
n)

T such that for each j ∈ J either x∗
j = x̂j

or x∗
j = x̌j .

Proof. The proof is similar to the proof of Lemma 4 in [20].

Some theorems are first presented to reduce the search domain of the
optimal solution of problem (1)–(2). The dimensions of the matrices of Q+

and Q− can be reduced using these theorems.

Theorem 4. Let Ti1 = {i ∈ I \ {i1} | J+
i ⊇ J+

i1
& J−

i ⊇ J−
i1
}, for i1 ∈ I. If

for vector x, where x̌ ≤ x ≤ x̂, max
j∈J

max{Tp(a
+
ij , xj), TP (a

−
ij , (1− xj))} = bi

holds for i = i1, then for each i ∈ Ti1 , we have

max
j∈J

max{Tp(a
+
ij , xj), TP (a

−
ij , (1− xj))} = bi.

Proof. If for the vector x, where x̌ ≤ x ≤ x̂, the following equality
max
j∈J

max{Tp(a
+
ij , xj), TP (a

−
ij , (1− xj))} = bi holds for i = i1, then there

exist some j1 ∈ J such that max{Tp(a
+
i1j1

, xj1), TP (a
−
i1j1

, (1− xj1))} = bi1 .
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Since these equalities hold only at the values of x̌j1 , for j1 ∈ J−
i1
(x), or x̂j1 ,

for j1 ∈ J+
i1
(x), then j1 ∈ J+

i1
(x)∪J−

i1
(x) ̸= ∅. Also, with regard to Definition

2, J+
i1
(x) ⊆ J+

i1
and J−

i1
(x) ⊆ J−

i1
. On the other hand, for each i ∈ Ti1 , we

have J+
i ⊇ J+

i1
and J−

i ⊇ J−
i1

. Therefore, for each i ∈ Ti1 , J+
i1
(x) ⊆ J+

i and
J−
i1
(x) ⊆ J−

i because J+
i1
(x) ⊆ J+

i1
, J−

i1
(x) ⊆ J−

i1
, J+

i1
⊆ J+

i , and J−
i1

⊆ J−
i ,

for each i ∈ Ti1 . Since j1 ∈ J+
i1
(x) ∪ J−

i1
(x), J+

i1
(x) ⊆ J+

i , and J−
i1
(x) ⊆ J−

i ,

for each i ∈ Ti1 , then it is concluded that (j1 ∈ J+
i1
(x) and j1 ∈ J+

i ) or
(j1 ∈ J−

i1
(x) and j1 ∈ J−

i ). So, we can write (xj1 = x̂j1 and q+ij1 = 1)
or (xj1 = x̌j1 and q−ij1 = 1), for each i ∈ Ti1 . With regard to Definition
1, Tp(a

+
ij1

, xj1) = bi or TP (a
−
ij1

, (1 − xj1)) = bi, for each i ∈ Ti1 . Thus,
the equality max{Tp(a

+
ij1

, xj1), TP (a
−
ij1

, (1− xj1))} = bi holds true for each
i ∈ Ti1 . Since x̌ ≤ x ≤ x̂ and max{Tp(a

+
ij1

, xj1), TP (a
−
ij1

, (1− xj1))} = bi, for
each i ∈ Ti1 , then the equality max

j∈J
max{Tp(a

+
ij , xj), TP (a

−
ij , (1− xj))} = bi

holds true for each i ∈ Ti1 .

The following corollary is a direct result of Theorem 4.
Corollary 2. Under the conditions of Theorem 4, all the equations with
numbers i ∈ Ti1 can be removed from the matrices of Q+ and Q− once x̌ and
x̂ have been obtained.

In the next theorem, an equivalent system with system (2) is presented.
Theorem 5. A binary vector u ∈ {0, 1}n induces a solution x = x̌ + V u
for the system of bipolar max-Tp FREs A+ ◦ x ∨ A− ◦ ¬x = b if and only if
(Q+ −Q−)u+Q−en ≥ em, where V=diag(x̂− x̌) and ek is a k-dimensional
vector with the unit components.
Proof. The proof is similar to the proof of Theorem 3 in [20].

Lemma 9. If there exists a pair i ∈ I and k ∈ J such that q+ik=q−ik = 1,
then the reduced system of (Q+′ − Q−′

)u + Q−′
en ≥ e′m−1 and the system

of (Q+ −Q−)u+Q−en ≥ em have the same solution set, where the matrices
of Q+′ , Q−′ , and e′m−1 are obtained by removing the ith row of the matrices
of Q+, Q−, and em, respectively.
Proof. Let S(Q+, Q−, u) = {u ∈ {0, 1}n | (Q+ −Q−)u+Q−en ≥ em} and
S(Q+′

, Q−′
, u) = {u ∈ {0, 1}n | (Q+′ −Q−′

)u+Q−′
en ≥ e′m−1}, where Q+′ ,

Q−′ , and e′m−1 are obtained from Q+, Q−, and em by removing their row of
i, respectively. We will now show S(Q+, Q−, u) = S(Q+′

, Q−′
, u). Consider

the ith equation of system (2). Since q+ik=q−ik = 1 and uk ∈ {0, 1}, the ith in-
equality of (Q+−Q−)u+Q−en ≥ em, or equivalently Q+u+Q−(en−u) ≥ em,
is automatically satisfied. Therefore, S(Q+, Q−, u) = S(Q+′

, Q−′
, u).

Theorem 6. If there exists a pair i ∈ I and k ∈ J such that q+ik=q−ik=1,
then we can remove the ith row in the computation of the minimum objective
value.
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Proof. It is obvious from Lemma 9 and Theorem 4 in [20].

Now, some sufficient conditions are presented to determine one of the
optimal solutions of problem (1)–(2). First of all, we express the following
definition.

Definition 3. Define two index sets I1 and I2 as follows:

I1 =
∪
j∈J

I−j and I2 = I \ I1.

Corollary 3. If I2 = ∅, then x∗ = x̌ is an optimal solution of problem
(1)–(2).

Proof. If
∪
j∈J

I−j = I, then x̌ is a feasible solution for the system of equations

(2). Hence, we can assign x̌j to x∗
j due to cj ≥ 0, for each j ∈ J .

If the vector of x̌ is a feasible solution of problem (1)–(2), then x̌ is
an optimal solution due to cj ≥ 0, for each j ∈ J . Otherwise, we have
to construct a solution x∗ with elements x∗

j = x̌j or x∗
j = x̂j such that∪

j∈J

Ij(x
∗) = I and the value of Z(x∗) is the minimum objective value. With

regard to these points, we present the following theorems.

Theorem 7. If there exists an index k ∈
∩

i∈I2

J+
i such that the following

conditions are satisfied
1. for all j ∈

∪
i∈I2

J+
i , ck(x̂k − x̌k) ≤ cj(x̂j − x̌j) and

2. I−k \ I+k ⊆
∪
j∈J

j ̸=k

I−j ,

then there exists an optimal solution x∗ = (x∗
j )j∈J for problem (1)–(2) as

follows:

x∗
j =


x̂k if j = k,

for all j ∈ J.

x̌j otherwise,
(4)

Proof. We show that x∗ is an optimal solution of problem (1)–(2). It is
enough to show that i) x∗ ∈ S(A+, A−, b) and ii) Z(x∗) ≤ Z(x), for each
x ∈ S(A+, A−, b).
i) With regard to the structure of vector x∗ and I−k \I+k ⊆

∪
j∈J

j ̸=k

I−j , the following

equalities hold: ∪
j∈J

Ij(x
∗) = (

∪
j∈J

j ̸=k

I−j ) ∪ I+k = (
∪
j∈J

I−j ) ∪ I+k . (5)



A new algorithm for solving linear programming problems ... 419

On the other hand, k ∈
∩

i∈I2

J+
i implies that I+k ⊇ I2 = I \

∪
j∈J

I−j . Therefore,

we have
I+k ∪ (

∪
j∈J

I−j ) = I. (6)

With regard to the expressions of (5) and (6), it is concluded that
∪
j∈J

Ij(x
∗) =

I. Since x̌ ≤ x∗ ≤ x̂ and
∪
j∈J

Ij(x
∗) = I, the vector x∗ is a feasible solution

for the system of equations (3) with regard to Theorem 1.
ii) For each x ∈ S(A+, A−, b) and x ̸= x∗, we have xk = x̂k or there exists
an index j ∈

∪
i∈I2

J+
i \ {k} such that xj = x̂j .

If xk = x̂k, then there exists an index j′ ∈ J \ {k} such that xj′ = x̂j′ due
to x ̸= x∗. Hence, we have Z(x∗) ≤ Z(x∗) + cj′(x̂j′ − x̌j′) ≤ Z(x). If there
exists an index j ∈

∪
i∈I2

J+
i \ {k} such that xj = x̂j , then Z(x) ≥ Z(x∗) with

regard to the condition 1 in Theorem 7.

Note that the optimal solution introduced in the relation (4) is not nec-
essarily unique with regard to condition 1 in Theorem 7 and cj ≥ 0, for each
j ∈ J . Considering Theorem 7, some sufficient conditions are expressed in
Lemma 10 that under them, problem (1)–(2) has a unique optimal solution
and the optimal solution is explicitly determined.

Lemma 10. If for each j ∈ J \
∪

i∈I2

J+
i , cj > 0 and there exists an index

k ∈
∩

i∈I2

J+
i such that the conditions

1. for all j ∈
∪

i∈I2

J+
i \ {k}, ck(x̂k − x̌k) < cj(x̂j − x̌j), and

2. I−k \ I+k ⊆
∪
j∈J

j ̸=k

I−j

are satisfied, then the optimization problem of (1)–(2) has a unique optimal
solution of x∗ = (x∗

j )j∈J as relation (4).

Proof. Since the assumptions of Theorem 7 hold, problem (1)–(2) has an
optimal solution as the relation (4). We now show its uniqueness. By the
assumptions of x̌j < x̂j and cj ≥ 0, for each j ∈ J , the condition 1 in Lemma
10 implies that cj > 0, for each j ∈

∪
i∈I2

J+
i \{k}. This point implies that cj >

0, for each j ∈ J \ {k}, with regard to the assumption for all j ∈ J \
∪

i∈I2

J+
i ,

cj > 0. For each x ∈ S(A+, A−, b) and x ̸= x∗, we have xk = x̂k or there
exists an index j ∈

∪
i∈I2

J+
i \ {k} such that xj = x̂j . If xk = x̂k, then there

exists an index j′ ∈ J \ {k} such that xj′ = x̂j′ due to x ̸= x∗. Hence, we
have Z(x∗) < Z(x∗) + cj′(x̂j′ − x̌j′) ≤ Z(x) due to the condition 1. If there
exists j ∈

∪
i∈I2

J+
i \ {k} such that xj = x̂j , then Z(x) > Z(x∗) due to cj > 0,



420 Aliannezhadi and Abbasi Molai

for each j ∈ J \ {k}. This shows the uniqueness of optimal solution x∗ for
problem (1)–(2).

The lemmas, theorems, and corollaries of this section are firstly applied to
reduce the size of the original problem. If all of the components of the optimal
solution of problem (1)–(2) were not determined, then we have to solve the
reduced problem. To do this, we will explain the modified branch-and-bound
method to find the rest of its components in the next section.

4 A procedure for the resolution of problem (1)–(2)

We first define a simple value matrix in this section. Applying the value ma-
trix and some points, the branch-and-bound method with the jump-tracking
technique is modified to solve problem (1)–(2). Finally, an algorithm is pro-
posed for the resolution of problem (1)–(2).

4.1 Modified branch-and-bound method

In this subsection, we rewrite the objective function (1) as follows:

Z(x) =

n∑
j=1

cjxj −
n∑

j=1

cj x̌j +

n∑
j=1

cj x̌j =

n∑
j=1

cj(xj − x̌j) +

n∑
j=1

cj x̌j .

Now, the optimal solutions of problem (1)–(2) are the same with the optimal
solutions of the following problem:

min Z̄(x) =

n∑
j=1

cj(xj − x̌j), (7)

s.t. A+ ◦ x ∨A− ◦ ¬x = b, (8)
x ∈ [0, 1]n. (9)

It is necessary to recall that Z(x∗) = Z̄(x∗) +
n∑

j=1

cj x̌j . Therefore, we try

to find the optimal solution of problem (7)–(9). Since x̌ ≤ x ≤ x̂, for each
x ∈ S(A+, A−, b) and c ≥ 0, we have Z̄(x) ≥ 0 and Z(x) ≥

∑
j∈J

cj x̌j for

each x ∈ S(A+, A−, b). As it was stated before, if x̌ ∈ S(A+, A−, b), then we
can set x̌ as an optimal solution. Otherwise, we have x̌ /∈ S(A+, A−, b). In
order to find the optimal solution of problem (1)–(2) (or (7)–(9)) according
to Lemma 8, we have to set some x̂j instead of x̌j , j ∈ J , in the vector x̌
such that the new vector x̌∗ satisfy all equations (8)–(9) and minimize the
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objective function (7). To do this, we first express a useful property of the
objective function (7).

Proposition 1. Let x = (xj)j∈J be a vector in S(A+, A−, b) where xt = x̌t

and xk = x̌k for two indices t and k such that t ̸= k and vectors x̌ and x̂
are lower and upper bounds of system (8)–(9), respectively. Construct two
new vectors x′ = (x′

j)j∈J and x′′ = (x′′
j )j∈J such that x′

t = x̂t and x′
j = xj ,

for each j ∈ J \ {t}, and x′′
k = x̂k and x′′

j = xj , for each j ∈ J \ {k}. If
ck(x̂k − x̌k) < ct(x̂t − x̌t), then Z̄(x′′) < Z̄(x′).

Proof. It is obvious.

It is necessary to recall the importance of the form of problem (7)–(9) with
respect to problem (1)–(2). With regard to Proposition 1, if ckx̂k > ctx̂t, then
we could not conclude that Z(x′′) > Z(x′) or Z(x′′) < Z(x′), but problem
(7)–(9) gives us more information. If ck(x̂k − x̌k) < ct(x̂t− x̌t), then we have
Z̄(x′′) < Z̄(x′). We use the useful property of the objective function (7) to
present a modified branch-and-bound method to solve problem (1)–(2). First
of all, we consider the following remark.

Remark 3. Rearrange the rows of matrices Q+ and Q− such that the first
|I2| rows in these matrices are the rows i ∈ I2. More precisely, transfer all
rows i ∈ I2 to the top |I2| of the rows of the matrices Q+ and Q−.

According to Lemma 8, there exists an optimal solution x∗ = (x∗
j )j∈J

such that either x∗
j = x̂j or x∗

j = x̌j for each j ∈ J . Hence, it is concluded
that Ij(x

∗)=I+j or Ij(x
∗)=I−j , for each j ∈ J , with regard to Theorem 3.

Since Ij(x
∗)=I+j or Ij(x

∗)=I−j , for each j ∈ J , we hereinafter focus on these
columns. To do this, the following value matrix is defined based on problem
(7)–(9).

Definition 4. Define the value matrix of M=(mij)m×2n, where

mi,2j−1 =

{
cj(x̂j − x̌j) if q+ij = 1,

∞ otherwise,
and mi,2j =

{
0 if q−ij = 1,

∞ otherwise,

for each i ∈ I and j ∈ J .

We will employ the branch-and-bound method with the jump-tracking
technique to solve problem (1)–(2) using the value matrix M . Since x̂j and x̌j ,
for each j ∈ J , cannot be selected simultaneously along a branch, we should
modify the branch-and-bound method. We consider three modifications on
this method similar to [1] as follows:

1. If we choose x̂j (or x̌j) to branch from one node to another node, then
we never use x̌j (or x̂j) to branch further on the current node.
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2. Under the stated conditions below, we cannot branch further on Node
k.
2.1. We have reached to the last row of the matrix M .
2.2. The selected variables along Node 0 to Node k together with x̌j ,
for each j ∈ J \ Jk, satisfy all the equations, where
Jk = {j ∈ J |xj has been selected along the branches from Node 0 to Node k}.
2.3. We do not have any candidate for satisfying an equation with
regard to modification 1.

3. If we cannot branch further on Node k under the conditions 2.1 and
2.2, then we assign x̌j to xj for each j ∈ J \ Jk.

Note that if we cannot branch further on Node k with the value of Zk under
the conditions 2.1 and 2.2, then Zk represents the objective value of problem
(7)–(9) for the obtained vector x along Node 0 to Node k. Then the total of
Zk along the branches from Node 0 to Node k can be calculated as follows:

Total Zk = Zk +
∑
j∈J

cj x̌j , (10)

where total Zk represents the objective value of problem (1)–(2) for the ob-
tained vector x.

In problem (7)–(9), each equation i, for i ∈ I1, of its constraints can be
satisfied by x̌j , for j ∈ J−

i , or x̂j , for j ∈ J+
i . In this case, the ith equation

may be satisfied without imposing any extra cost to the objective function.
On the other hand, each equation i, for i ∈ I2, can only be satisfied by x̂j ,
for j ∈ J+

i , that is, we have to expend extra cost for satisfying each equation
i, for i ∈ I2. Since each equation i, for i ∈ I2, is satisfied with extra cost,
we start the modified branch-and-bound method from row(s) i ∈ I2. In this
case, the ith equation, for i ∈ I1, may be satisfied with the expended cost for
i ∈ I2 or without imposing any extra cost to the objective function. Hence,
we expect that the visited nodes of the modified branch-and-bound method
can be decreased when we consider Remark 3.

We are now ready to design an algorithm to solve problem (1)–(2) based
on the obtained results up to now.

4.2 An algorithm for the resolution of problem (1)–(2)

Algorithm 1. Consider the optimization problem (1)–(2).
Step 1. Compute the lower and upper bound of x̌ and x̂ applying Lemma
3.
Step 2. If b = 0 and x̌j ≤ x̂j , for each j ∈ J , then S(A+, A−, b) = {x | x̌ ≤
x ≤ x̂} and x∗ = x̌ is an optimal solution of problem (1)–(2) with regard to
Corollary 1 and stop!
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Step 3. If x̌j < x̂j , for each j ∈ J , and bi > 0, for each i ∈ I, then go to
Step 4. Otherwise, use Lemmas 4 and 6.
Step 4. Compute the matrices of Q+ and Q−, the index sets of I+j and
I−j , for each j ∈ J , and the index sets of J+

i and J−
i , for each i ∈ I using

Definitions 1 and 2.
Step 5. Check the consistency of bipolar max-Tp FREs (2) using Theorem
2. If it is inconsistent, then stop! Otherwise, go to Step 6.
Step 6. Perform the process of problem reduction as follows:

6.1. Compute two index sets I1 and I2 using Definition 3.
6.2. If I2 = ∅, then x∗ = x̌ is an optimal solution of problem (1)–(2)

with regard to Corollary 3 and stop!
6.3. If the conditions of Lemma 10 are satisfied, then the unique

optimal solution x∗ of problem (1)–(2) can be obtained by relation (4) and
stop!

6.4. Check the conditions of Theorem 7. If the conditions are satisfied,
then there exists an optimal solution x∗ according to relation (4) and stop!

6.5. Check the conditions of Theorem 4. If the conditions are satisfied,
then remove all the equations with numbers i ∈ Ti1 from the matrices of Q+

and Q− with regard to Corollary 2.
6.6. If there exists a pair i ∈ I and k ∈ J such that q+ik=q−ik=1, then

we can remove the row of i in the computation of the minimum objective
value with regard to Theorem 6.
Step 7. If Q+=Q−=∅, then assign x̌j to x∗

j and go to Step 10.
Step 8. Rearrange the rows of the matrices Q+ and Q− according to Remark
3. Also, generate the value matrix of M using Definition 4.
Step 9. Employ the modified branch-and-bound method with the jump-
tracking technique on the matrix M to solve the optimization problem of
(1)–(2).
Step 10. Produce the optimal solution and the optimal value of problem
(1)–(2). End.

5 Numerical examples

We now illustrate Algorithm 1 by the following examples.

Example 1. Consider the following optimization problem:

min x1 + 3x2 + 2x3 + 5x4 + 8x5 + 7x6, (11)
s.t. A+ ◦ x ∨A− ◦ ¬x = b, (12)

x ∈ [0, 1]6,

where
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A+ =


0.4 0.1 0.25 0.29 0.18 0.07
0.32 0.16 0.23 0.1 0.2 0.48
0.08 0.05 0.02 0.1 0.03 0.06
0.15 0.3 0.17 0.2 0.14 0.05
0.09 0.2 0.03 0.04 0.15 0.24
0.49 0.58 0.6 0.37 0.75 0.54

 ,

A− =


0.21 0.4 0.19 0.27 0.12 0.04
0.15 0.32 0.8 0.14 0.22 0.2
0.1 0.08 0.05 0.18 0.07 0.06
0.17 0.04 0.15 0.07 0.3 0.2
0.11 0.1 0.03 0.14 0.14 0.07
0.24 0.52 0.47 0.5 0.33 0.25

 ,

b = (0.3, 0.24, 0.09, 0.18, 0.12, 0.6)T , and x = (x1, x2, x3, x4, x5, x6)
T . Now,

we apply Algorithm 1 to solve the optimization problem of (11)–(12).
Step 1. The lower and upper bound of x̌ and x̂ are as follows:
x̌ = (0.1, 0.25, 0.7, 0.5, 0.4, 0.1)T and x̂ = (0.75, 0.6, 1, 0.9, 0.8, 0.5)T .
Step 2. Since the conditions of Corollary 1 do not hold, we go to Step 3.
Step 3. In this example x̌j < x̂j , for each j ∈ J and bi > 0, for each i ∈ I.
Therefore, we go to Step 4.
Step 4. Applying Definition 1, the matrices of Q+ and Q− are obtained as
follows:

Q+ =

1 2 3 4 5 6
1
2
3
4
5
6


1 0 0 0 0 0
1 0 0 0 0 1
0 0 0 1 0 0
0 1 0 1 0 0
0 1 0 0 1 1
0 0 1 0 1 0


and Q− =

1 2 3 4 5 6
1
2
3
4
5
6


0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 .

Also, the index sets of I+j and I−j , for all j ∈ J can be computed as
follows:
I+1 = {1, 2}, I+2 = {4, 5}, I+3 = {6}, I+4 = {3, 4}, I+5 = {5, 6}, I+6 =
{2, 5}, I−1 = {3}, I−2 = {1, 2}, I−3 = {2}, I−4 = {3}, I−5 = {4}, and
I−6 = {4}.

Moreover, we can compute the index sets of J+
i and J−

i , for all i ∈ I, as
follows:
J+
1 = {1}, J+

2 = {1, 6}, J+
3 = {4}, J+

4 = {2, 4}, J+
5 = {2, 5, 6}, J+

6 =
{3, 5}, J−

1 = {2}, J−
2 = {2, 3}, J−

3 = {1, 4}, J−
4 = {5, 6}, and J−

5 = J−
6 = ∅.

Step 5. The bipolar max-Tp FREs of A+ ◦ x ∨ A− ◦ ¬x = b is consistent
according to Theorem 2. So, we go to Step 6.
Step 6. Perform the process of problem reduction as follows:
6.1. Two index sets I1 and I2 are as follows: I1 = {1, 2, 3, 4} and I2 = {5, 6}.
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Since the optimization problem of (11)–(12) cannot be reduced by Steps
6.2–6.4, we go to Step 6.5.
6.5. In this example, T1 = {2}, that is, J+

1 ⊆ J+
2 and J−

1 ⊆ J−
2 . Applying

Corollary 2, the second row of two matrices Q+ and Q− can be removed.
6.6. Since q+34 = q−34 = 1, the third equation can be eliminated from our
consideration with regard to Theorem 6.

The matrices of Q+ and Q− cannot be reduced further. So, we go to Step
7.
Step 7. Since Q+ ̸= ∅ and Q− ̸= ∅, we go to Step 8.
Step 8. With regard to Remark 3, the matrices of Q+ and Q− can be
updated as follows:

Q+ =

1 2 3 4 5 6
5
6
1
4


0 1 0 0 1 1
0 0 1 0 1 0
1 0 0 0 0 0
0 1 0 1 0 0

and Q− =

1 2 3 4 5 6
5
6
1
4


0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1


For the updated matrices of Q+ and Q−, the value matrix of M can be

generated as follows:

M =

1 2 3 4 5 6
∞ ∞ 1.05 ∞ ∞ ∞ ∞ ∞ 3.2 ∞ 2.8 ∞
∞ ∞ ∞ ∞ 0.6 ∞ ∞ ∞ 3.2 ∞ ∞ ∞
0.65 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 1.05 ∞ ∞ ∞ 2 ∞ ∞ 0 ∞ 0

 .

Step 9. We are now ready to use the modified branch-and-bound method
with the jump-tracking technique on the matrix M . We begin with the first
equation, that is, i = 1. The set of {x̂2, x̂5, x̂6} introduces three candidates
to satisfy the first equation. Therefore, we have to branch from Node 0 in
Figure 2. If we select x̂2 (Node 1), then the value of Z1 is 1.05. Note that
x̌2 cannot be used for further branching on Node 1. Also, if we select x̂5

(x̂6), then we have Z2 = 3.2 (Z3 = 2.8). Furthermore, we never use x̌5 (x̌6)
to branch further on Node 2 (Node 3). Here, Node 1 is selected to branch
further because of the least objective value.

Move to the second row of the matrix M . Since the set of {x̂3, x̂5} contains
two candidates to satisfy the second equation, we have two branches from
Node 1 as it has been illustrated in Figure 2. If x̂3 (Node 4) is selected, then
the value of Z4 is 1.65. If x̂5 (Node 5) is considered, then we have Z5 = 4.25.
Now, we can branch further on four Nodes 2, 3, 4, and 5 but Node 4 is chosen
with regard to the least objective value.

Move to the third row of the matrix M . The set of {x̂1, x̌2} contains two
candidates to satisfy the third equation, but x̌2 cannot be used to branch
further on Node 4 because x̂2 has been chosen along Node 0 to Node 4
(modification 1). Therefore, the set of {x̂1} contains the only candidate to
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Figure 2: The modified branch-and-bound method

satisfy the third equation here. If x̂1 (Node 6) is selected, then it is concluded
that Z6 = 2.3.

Since x̂1, x̂2, and x̂3 together with x̌4, x̌5, and x̌6 satisfy all the equa-
tions, we do not branch further on Node 6 with regard to modification 2.2.
Therefore, considering modification 3, the vector x=(x̂1, x̂2, x̂3, x̌4, x̌5, x̌6)

T

is a solution with the objective value of 2.3 for the equivalent problem. Since
the value of Z6 is less than Z2, Z3, and Z5, we can stop further branching
on all Nodes 2, 3, and 5. Thus, the total of Z6 can be computed as follows:

Total Z6=Z6 +
6∑

j=1

cj x̌j = 2.3 + 8.65 = 10.95. Every node is stopped further

branching. Hence, the optimal solution can be obtained from Node 6, that
is, x∗

1 = 0.75, x∗
2 = 0.6, x∗

3 = 1, x∗
4 = 0.5, x∗

5 = 0.4, and x∗
6 = 0.1 with the

total of Z6 = 10.95.
Step 10. The optimal objective value is 10.95 and the optimal solution is
x∗ = (x∗

1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6)

T = (0.75, 0.6, 1, 0.5, 0.4, 0.1)T .
If we do not apply Remark 3 to solve this example, we need to consider 25
nodes. Considering Remark 3, we need only six nodes to solve this example.

Example 2. Consider the following optimization problem:

min 2x1 + 5x2 + 3x3 + 4x4 + x5 + 6x6, (13)
s.t. A+ ◦ x ∨A− ◦ ¬x = b, (14)

x ∈ [0, 1]6,

where
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A+ =


0.7 0.3 0.96 0.66 0.8 0.05
0.31 0.54 0.34 0.3 0.36 0.45
0.06 1 0.04 0.625 0.03 0.08
0.15 0.15 0.19 0.225 0.16 0.03
0.6 0.08 0.07 0.06 0.13 0.4
0.3 0.05 0.09 0.07 0.11 0.19

 ,

A− =


0.11 0.4 0.19 0.27 0.12 0.04
0.14 0.24 0.09 0.14 0.22 0.2
0.1 0.08 0.05 0.18 0.8 0.8
0.2 0.04 0.15 0.3 0.11 0.05
0.11 0.4 0.32 0.14 0.14 0.07
0.03 0.2 0.06 0.02 0.04 0.07

 ,

b = (0.6, 0.27, 0.5, 0.18, 0.24, 0.12)T , and x = (x1, x2, x3, x4, x5, x6)
T . Now,

we apply Algorithm 1 to solve the optimization problem of (13)–(14).
Step 1. The lower and upper bound of x̌ and x̂ are as follows:
x̌ = (0.1, 0.4, 0.25, 0.4, 0.375, 0.375)T and x̂ = (0.4, 0.5, 0.625, 0.8, 0.75, 0.6)T .
Step 2. Since the conditions of Corollary 1 do not hold, we go to Step 3.
Step 3. In this example, x̌j < x̂j , for each j ∈ J and bi > 0, for each i ∈ I.
Therefore, we go to Step 4.
Step 4. Applying Definition 1, the matrices of Q+ and Q− are obtained as
follows:

Q+ =

1 2 3 4 5 6
1
2
3
4
5
6


0 0 1 0 1 0
0 1 0 0 1 1
0 1 0 1 0 0
0 0 0 1 0 0
1 0 0 0 0 1
1 0 0 0 0 0


and Q− =

1 2 3 4 5 6
1
2
3
4
5
6


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
1 0 0 1 0 0
0 1 1 0 0 0
0 1 0 0 0 0

 .

Also, the index sets of I+j and I−j , for all j ∈ J can be computed as
follows:
I+1 = {5, 6}, I+2 = {2, 3}, I+3 = {1}, I+4 = {3, 4}, I+5 = {1, 2}, I+6 =
{2, 5}, I−1 = {4}, I−2 = {5, 6}, I−3 = {5}, I−4 = {4}, I−5 = {3}, and
I−6 = {3}.

Moreover, we can compute the index sets of J+
i and J−

i , for all i ∈ I, as
follows:
J+
1 = {3, 5}, J+

2 = {2, 5, 6}, J+
3 = {2, 4}, J+

4 = {4}, J+
5 = {1, 6}, J+

6 =
{1}, J−

1 = J−
2 = ∅, J−

3 = {5, 6}, J−
4 = {1, 4}, J−

5 = {2, 3}, and J−
6 = {2}.

Step 5. The bipolar max-Tp FREs of A+ ◦ x ∨ A− ◦ ¬x = b is consistent
according to Theorem 2. So, we go to Step 6.
Step 6. Perform the process of problem reduction as follows:
6.1. Two index sets I1 and I2 are as follows: I1 = {3, 4, 5, 6} and I2 = {1, 2}.
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6.2. The condition of Substep 2 is not satisfied for this problem.
6.3. The conditions of this substep hold for this problem. Since for each
j ∈ J −

∪
i∈I2

= {1, . . . , 6} − (J+
1

∪
J+
2 ) = {1, 4}, we have c1 = 2 > 0 and

c4 = 4 > 0. Also, for k ∈
∩

i∈I2
= {5}, the following conditions are satisfied:

1. for all j ∈
∪

i∈I2
J+
i − {5} = {2, 3, 6}, we have c5(x̂5 − x̌5) = 0.225 <

cj(x̂j − x̌j).
2. I−5 − I+5 = {3} ⊆

∪
j∈J,j ̸=5 I

−
j = {3, 4, 5, 6}.

Therefore, according to Lemma 10, the unique optimal solution of the prob-
lem is as follows: x∗ = (0.1, 0.4, 0.25, 0.4, 0.75, 0.375) with the optimal objec-
tive value Z∗ = 7.55

6 Comparison of the proposed algorithm with the
methods in other papers

In this section, we compare the proposed algorithm with the methods in other
papers [9, 20, 23, 3] to solve problem (1)–(2) with regard to the obtained
results from Examples 1 and 2 in Section 5.

As it is seen in Figure 2, Algorithm 1 solves the problem of Example 1
only in six nodes by the branch-and-bound method. Also, Algorithm 1 solves
Example 2 without using the branch-and-bound method. Its optimal solution
is found in Substep 6.3 by Lemma 10.

Freson, De Baets, and De Meyer [9] discussed problem (1)–(2) with the
max-min composition operator. They designed an algorithm to solve the
problem. Its Step 1 checks the necessary condition (46) in [9]. Its compu-
tational cost is O(mn). Step 2 constructs vectors g+ and s− taking supre-
mum and infimum from m maximal solutions which its computational cost
is O(mn). Step 3 generates all elements of set B and keeps those that satisfy
constraints (30) in [9]. To generate all the elements of B according to relation
(48) in [9], we firstly need to produce the set ({0, 1}

∪
{bi, b̄i|i = 1, . . . ,m})n.

Its computational cost is O((2m+2)n). Then we must check whether each its
element belongs to [s−, g+] or not? Its computational cost is O(n(2m+2)n).
Now, we must check whether each element B satisfies constraints (30) in
[9] or not? The computational cost of this work is O(mn) for each ele-
ment of the set B. If we check all the elements of set B, then its com-
putational cost is O(mn(2m+ 2)n). So, the computational cost of Step 3 is
T3 = O(n(2m+2)n+mn(2m+2)n) = O(mn(2m+2)n). Step 4 selects the el-
ements in B

∩
D with the highest value for the objective function. To do this,

we must check the objective function for |B
∩
D| elements which its computa-

tional cost is O(|B
∩
D|) ≤ O((2m+2)n). Therefore, the computational com-

plexity of the given algorithm in [9] is TF = O(mn(2m+2)n). For an instance
of the problem with the dimensions m = n = 6 like Examples 1 and 2, its
computational complexity is TF = O(6×6×(2×6+2)6) = 271063296×O(1).
This point implies that (2 × 6 + 2)6 = 7529536 elements are produced and



A new algorithm for solving linear programming problems ... 429

its feasibility is checked in m equations of n-variable. Then the optimizer is
found by computing the objective function values in the feasible vectors.

In [20], problem (1)–(2) is discussed with the max-Lukasiewicz t-norm
composition. Li and Liu [20] directly converted the problem to a 0-1 integer
linear optimization problem without its simplification and reduction. If we
apply their method to solve the problem of Example 1, we should consider
the following 0-1 integer programming problem:

Z = min 8.65 + 0.65u1 + 1.05u2 + 0.6u3 + 2u4 + 3.2u5 + 2.8u6,

s.t.


1 −1 0 0 0 0
1 −1 −1 0 0 1
−1 0 0 0 0 0
0 1 0 1 −1 −1
0 1 0 0 1 1
0 0 1 0 1 0




u1

u2

u3

u4

u5

u6

 ≥


0
−1
−1
−1
1
1

 ,

u ∈ {0, 1}6.

If we apply Algorithm 1 of this paper for Example 1, we should solve the
following problem with smaller dimensions:

Z = min 8.65 + 0.65u1 + 1.05u2 + 0.6u3 + 2u4 + 3.2u5 + 2.8u6,

s.t.


0 1 0 0 1 1
0 0 1 0 1 0
1 −1 0 0 0 0
0 1 0 1 −1 −1



u1

u2

u3

u4

u5

u6

 ≥


1
1
0
−1

 ,

u ∈ {0, 1}6.

If we apply Li and Liu’s method to solve the problem of Example 2, we should
consider the following 0-1 integer programming problem:

Z = min 7.175 + 0.6u1 + 0.5u2 + 1.125u3 + 1.6u4 + 0.375u5 + 1.35u6,

s.t.


0 0 1 0 1 0
0 1 0 0 1 1
0 1 0 1 −1 −1
−1 0 0 0 0 0
1 −1 −1 0 0 1
1 −1 0 0 0 0




u1

u2

u3

u4

u5

u6

 ≥


1
1
−1
−1
−1
0

 ,

u ∈ {0, 1}6.

If we apply Algorithm 1 of this paper for Example 2, we directly obtain
the unique optimal solution of the problem of Example 2 without using the
branch-and-bound method and 0-1 integer programming problem.
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In [3], problem (1)–(2) was discussed with the max-Hamacher t-norm com-
position with some rules to simplify the problem. The rules are completely
different from the proposed procedures of this paper for simplification. The
rules in [3] are not applicable for the problem in Example 1. Hence, if we
use the given algorithm in [3] for Example 1, the branch-and-bound method
should be applied on the matrix M as follows:

M =

1 2 3 4 5 6
0.65 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0.65 ∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞ 2.8 ∞
∞ 0 ∞ ∞ ∞ ∞ 2 0 ∞ ∞ ∞ ∞
∞ ∞ 1.05 ∞ ∞ ∞ 2 ∞ ∞ 0 ∞ 0
∞ ∞ 1.05 ∞ ∞ ∞ ∞ ∞ 3.2 ∞ 2.8 ∞
∞ ∞ ∞ ∞ 0.6 ∞ ∞ ∞ 3.2 ∞ ∞ ∞

 .
(15)

If we use Algorithm 1 for Example 1, the branch-and-bound method should
be applied on the matrix M as follows:

M =

1 2 3 4 5 6
∞ ∞ 1.05 ∞ ∞ ∞ ∞ ∞ 3.2 ∞ 2.8 ∞
∞ ∞ ∞ ∞ 0.6 ∞ ∞ ∞ 3.2 ∞ ∞ ∞
0.65 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 1.05 ∞ ∞ ∞ 2 ∞ ∞ 0 ∞ 0

 .
(16)

Also, the rules in [3] are not applicable for the problem in Example 2. Hence,
if we use the given algorithm in [3] for Example 2, the branch-and-bound
method should be applied on the matrix M as follows:

M =

1 2 3 4 5 6
∞ ∞ ∞ ∞ 1.125 ∞ ∞ ∞ 0.375 ∞ ∞ ∞
∞ ∞ 0.5 ∞ ∞ ∞ ∞ ∞ 0.375 ∞ 1.35 ∞
∞ ∞ 0.5 ∞ ∞ ∞ 1.6 ∞ ∞ 0 ∞ 0
∞ 0 ∞ ∞ ∞ ∞ 1.6 0 ∞ ∞ ∞ ∞
0.6 ∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞ 1.35 ∞
0.6 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

 .
(17)

If we use Algorithm 1 for Example 2, its optimal solution is directly found in
Substep 6.3 without using the branch-and-bound method and M = ∅.

In [23], problem (1)–(2) was discussed with the max-Lukasiewicz com-
position with some rules to simplify the problem. The rules are completely
different from the proposed procedures of this paper for simplification. If we
apply the method in [23] for the problem of Example 1 with the max-product
composition, rule 3 in [23] can be used for its simplification. Applying the
equivalent form of the rule 3 for problem (1)–(2), the forth row of the matrix
M in the relation (15) is removed and the branch-and-bound method should
be employed on the 0-1 integer programming equivalent to the following value
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matrix:

M =

1 2 3 4 5 6
0.65 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0.65 ∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞ 2.8 ∞
∞ 0 ∞ ∞ ∞ ∞ 2 0 ∞ ∞ ∞ ∞
∞ ∞ 1.05 ∞ ∞ ∞ ∞ ∞ 3.2 ∞ 2.8 ∞
∞ ∞ ∞ ∞ 0.6 ∞ ∞ ∞ 3.2 ∞ ∞ ∞

 .
(18)

If we use Algorithm 1 for Example 1, the branch-and-bound method should
be applied on the matrix M in the relation (16) and considering Remark 3,
we need only six nodes to solve this example. If we apply the method in
[23] for the problem of Example 2 with the max-product composition, rule
3 in [23] can be used for its simplification. Applying the equivalent form
of rule 3 in [23], the third row of the matrix M in relation (17) is removed
and the branch-and-bound method should be employed on the 0-1 integer
programming equivalent to the following value matrix:

M =

1 2 3 4 5 6
∞ ∞ ∞ ∞ 1.125 ∞ ∞ ∞ 0.375 ∞ ∞ ∞
∞ ∞ 0.5 ∞ ∞ ∞ ∞ ∞ 0.375 ∞ 1.35 ∞
∞ 0 ∞ ∞ ∞ ∞ 1.6 0 ∞ ∞ ∞ ∞
0.6 ∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞ 1.35 ∞
0.6 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

 .
(19)

If we use Algorithm 1 for Example 2, its optimal solution is directly found in
Substep 6.3 without using the branch-and-bound method and M = ∅.

The other preferences of the proposed algorithm with respect to the pre-
sented algorithms in [9, 20, 23, 3] for the resolution of problem (1)–(2) are
as follows. The proposed algorithm introduces two new classes of problem
(1)–(2) with the max-product composition operator, which can directly be
solved only by Substep 6.3 or Substep 6.4. The optimal solution of these
classes of the problem satisfying conditions of Substep 6.3 or Substep 6.4
can be obtained by the relation (4) without applying the branch-and-bound
method or using rules repeatedly. The classes have not been introduced in
[9, 20, 23, 3]. Other proposed rules in Step 6 of Algorithm 1 are different
from the given rules in [23, 3]. In [9, 20], the authors have not used the
rules of simplification to reduce the original problem. Since the algorithms
in [20, 23, 3] and the proposed algorithm are based on the branch-and-bound
algorithm, the algorithms are convergent. The algorithm in [9] checks all the
possible feasible solutions to find the optimal solution.
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7 Conclusions and future works

The linear optimization problem with the bipolar max-product FREs was
studied in this paper. The characterizations of its feasible domain were in-
vestigated. Some simplification operations were proposed to delete some
equations. With regard to these operations, the size of the original problem
was reduced. Then, some sufficient conditions were presented to determine
one of the optimal solutions to the problem and its uniqueness. Moreover, a
value matrix was defined based on the characteristic matrices of the feasible
domain of the problem. Then, the branch-and-bound method was modified
to solve the reduced problem with regard to the value matrix. An algorithm
was finally designed to solve the problem and compared with other methods
to show the efficiency of the proposed algorithm. In future work, the linear
optimization problem will be developed by supposing fuzzy linear systems
with bipolar fuzzy numbers based on references [10, 11].
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