
G
al
le
y
P
ro
of

Iranian Journal of Numerical Analysis and Optimization
Vol. 8, No. 2, (2018), pp 75–93
DOI:10.22067/ijnao.v8i2.49973

Explicit and implicit schemes for
fractional–order Hantavirus model

Mevlüde Yakıt Ongun∗ and Damla Arslan

Abstract

In this paper, the fractional–order form of a mouse population model is
introduced. Some explicit and implicit schemes, which are Theta methods
and nonstandard finite difference (NSFD) schemes, are implemented to give a

numerical solution of nonlinear ordinary differential equation system named
Hantavirus epidemic model. These methods are compared and discussed that
the method preserves the positivity properties of the integer order system.
The numerical solutions are illustrated by means of some graphs. Numerical

results of explicit and implicit methods denote that these methods are easy
and accurate when applied to fractional–order Hantavirus model.

Keywords: Explicit and implicit methods; Theta method; Nonstandard fi-
nite difference scheme; Fractional–order nonlinear differential equation sys-
tems; Mouse population model.

1 Introduction

Although fractional calculus has a long history, its applications to natural sci-
ence are just a recent focus of interest. The description of some phenomena
is more accurate when the fractional derivative is used. In many scientific
area specially in physics, chemistry, and engineering, the fractional differ-
ential equations (FDEs) become a popular subject, which are increasingly
used to model problems in a number of research areas including dynamical
systems, mechanical systems, signal processing, electronic circuit theory, con-
trol theory, chaos synchronization, mechanics, seismology, and many others.
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Some of these studies may be found in [4] and [35]. Lots of books written
by the authors Podlubny [30], Lubich [19], Miller and Ross [24], Oldham and
Spainer [28], Diethelm et al. [8], Samko et al. [34] played a significant role to
understand the subject of FDEs and gave some methods for solutions.

Several methods, which are the Adams–Moulton method [14], [12], the
homotopy perturbation method [25], the Adomian decomposition method
[25], [26], the variational iteration method [36], the differential transform
method [3], [11], the operational method [20], the predictor corrector meth-
ods [7], [8], [13], the product integration rules [15], [38], nonstandard finite
difference scheme [29] have been used to solve FDEs. Numerical solution
methods are frequently referred to as being explicit or implicit. These sit-
uations are being encountered numerical solutions of FDEs and equation
systems.

The first and important study, which is relevant with Hantavirus model,
is given by [2]. The stability analysis of model, which is discretized with
nonstandard finite difference scheme, is given by [5], [6]. Further, variational
iteration method [16], exponential matrix method (EMM) [39], multistage
differential transformation method [17] have been used to solve Hantavirus
model and FDE solutions of this model studied by [31], [37].

The effect of the environmental parameter on the Hantavirus infection
through a fractional–order SI model was studied by Rida et al.(2012). They
presented a fractional–order model of the Hantavirus infection in terms of
simple differential equations involving the mice population. They studied
that the effect of changes in ecological conditions and diversity of habitats
can be observed by varying the value of the environmental parameter k. They
used a generalized Euler method (GEM) to obtain an analytic approximate
solution of the model [37].

In this paper, new numerical methods determined for fractional–order
nonlinear differential equation model known as Hantavirus epidemic model.
These model based on a nonlinear differential equation of order p, where p is
a constant in range 0 < p < 1. Some explicit and implicit methods such as
theta method and nonstandard finite difference schemes are studied for the
numerical solution of the fractional–order model. Especially the purpose of
the studying to these two methods that both methods are more general face
of classical methods and both methods allow to some arbitrary choice.

The following model is given in [2] has been used in the study of Han-
tavirus epidemics:

dMs

dt
= bM − cMs −

MsM

K
− aMsMI ,

dMI

dt
= −cMI −

MIM

K
+ aMsMI , (1)

where
Ms : the population of susceptible mice (Ms ⩾ 0),
MI : the population of infected mice (MI ⩾ 0),
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b : the birth rate,

c : the death rate,

K : the carrying capacity of the environment.

In this model, mice movement as a process of diffusion is ignored and
whole population is composed of two cases of mice, susceptible and infected.
For the systems (1), the total population M = Ms+MI satisfying the logistic
differential equation

dM

dt
= (b− c)M − M2

K
. (2)

The carrying capacity for the total population is M∗ = (b − c)K. The
critical value of the carrying capacity is

Kc =
b

a(b− c)
.

Let us Ms = x,MI = y in equation (1),

dx

dt
= (b− c)x+ by − x2

K
−
(
1 + aK

K

)
xy,

dy

dt
= −cy − y2

K
−
(
1− aK

K

)
xy. (3)

The dynamics of the continuous system (3) have been given in [2, 5, 6] as
the following:

i) If b ≤ c, then the system has a unique equilibrium (0, 0), and it is
globally asymptotically stable.

ii) If b > c and K ≤ b
a(b−c) , then the system has two equilibria: (0, 0),

which is unstable, and (K(b− c), 0), which is globally asymptotically stable.

iii) If b > c and K > b
a(b−c) , then the system has three equilibria: (0, 0)

and (K(b−c), 0), which are unstable; and
(
b
a ,K(b− c)− b

a

)
, which is globally

asymptotically stable.

In this article,the fractional–order Hantavirus model examined, which
given as below:

CDp
t0x(t) = (b− c)x(t) + by(t)− x(t)2

K
−
(
1 + aK

K

)
x(t)y(t),

CDp
t0y(t) = −cy(t)−

y(t)2

K
−
(
1− aK

K

)
x(t)y(t),

x(0) = x0, y(0) = y0,
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78 Mevlüde Yakıt Ongun and Damla Arslan

where noninteger derivative is defined as the Caputo derivative. The fractional–
order equation system is introduced and denoted that this model has a unique
solution with given initial conditions while t ≥ 0. Some explicit and implicit
schemes are implemented to study the dynamics behaviors of fractional order
Hantavirus epidemic system. Some numerical solutions illustrated by means
of some graphs are provided in next sections.

2 Fractional derivatives

On this section, some definitions and relationship of fractional order integra-
tion and fractional–order differentiation mentioned [29].

The Grünwald–Letnikov (GL) operator of order p > 0 is defined as

GLD
p
t0f(t) = lim

N→∞
h−p
N

N∑
j=0

w
(p)
j f(t− jhN )

with

w
(p)
j = (−1)j

(
p

j

)
=

Γ(j − p)

Γ(−p)Γ(j + 1)
.

Note that the weights w
(p)
j are the coefficient in the power series expansion

of (1− ξ)p; that is,

(1− ξ)p =
∞∑
j=0

w
(p)
j ξj

and they can be evaluated recursively by means of the recurrence

w
(p)
0 = 1, w

(p)
j =

(
1− 1 + p

j

)
w

(p)
j−1, j = 1, 2, . . . . (4)

The relationship between Riemann–Liouville (RL) and Caputo definitions
is

CD
p
t0f(t) =RL Dp

t0 (f(t)− Tm−1[f ; t0]) ,

where Tm−1[f ; t0] is the (m − 1)th degree Taylor polynomial for f centered
at t0

Tm−1[f ; t0](t) =
m−1∑
k=0

tk

k!
f (k)(t0).

While, 0 < p < 1, it is m = 1 and T0[f ; t0](t) = f(t0). Thus, we obtained

CD
p
t0f(t) =RL Dp

t0(f(t)− f(t0)).
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Under suitable assumptions of regularity, the RL and GL operators coin-
cide; that is,

RLD
p
t0f(t) =GL Dp

t0f(t).

A consequence of the above two points is that in general

CD
p
t0f(t) =GL Dp

t0f(t) (f(t)− Tm−1[f ; t0]) ,

and while 0 < p < 1 it is

CD
p
t0f(t) =GL Dp

0,t(f(t)− f(t0)). (5)

In case it used in differential equations of fractional order, the Caputo
definition is preferable since it allows the couple the equation with initial
conditions of classical type (i.e., initial condition of Cauchy type). In this
way we can obtain {

CD
p
t0f(t) = f(t, y(t)),

y(t0) = y0.

In case we use the RL definition; we can couple different initial conditions,
as {

RLD
p
t0f(t) = f(t, y(t)),

lim
t→t+0

J1−p
t0 y(t) = b1,

which does not have a clear physical meaning. Therefore, they are not
useful for practical applications.

Lemma 1. Let 0 < p < 1, and let w
(p)
n be the coefficients in the power series

expansion of (1− ξ)α given in w
(p)
j . Then for any n = 1, 2, . . . ,

a) −1 < w
(p)
1 < 0,

b) 0 < w
(p−1)
1 < 1.

Proof. The proof is an immediate consequence of the recursive relationship
stated in (4).

3 Fractional order Hantavirus epidemics

In this section, the fractional order applied in the model of Hantavirus epi-
demics [2]. The new system is given as the set of fractional differential equa-
tions (FDEs):
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CDp
t0x(t) = (b− c)x(t) + by(t)− x(t)2

K
−
(
1 + aK

K

)
x(t)y(t),

CDp
t0y(t) = −cy(t)−

y(t)2

K
−
(
1− aK

K

)
x(t)y(t), (6)

x(0) = x0, y(0) = y0, (7)

where CD
p
0,t denotes the fractional derivative operator, with respect to the

origin, according to Caputo’s definition [30] and x(t) and y(t) are activa-
tor and inhibitor variables. The fractional derivatives are used to describe
nonhomogeneous character of the ecosystems, with respect to the presence of
competitors. The parameter p denotes the density of competitor species in the
system. The reason, to use fractional order differential equations (FODE),
is to be naturally related with systems with memory, which exists in most
biological systems. Also FODE are closely related to fractals, which are abun-
dant in biological systems [17]. The results derived of the fractional system
(3) and (4) are more general nature.

When the power exponent is p = 1, this corresponds to equation (3) and
varies competitor’s populations when 0 < p < 1. While p > 1, the density of
competitor or alien species will increase in the populations [1]. The stability
analysis given by the study of [29].

For non–negative solutions, denote R2
+ =

{
x ∈ R2 | x ≥ 0

}
, and let

x(t) = (X,Y )
T
. To prove the main theorem, we need following lemma and

corollary given by [9, 27].

Lemma 2 (Generalized Mean Value Theorem). Suppose that f(x) ∈ C[a, b]
and Dp

af(x) ∈ C[a, b] for 0 < p ≤ 1; then we have

f(x) = f(a) +
1

Γ(p)
(Dp

af) (ξ)(x− a)p

with a ≤ ξ ≤ x for all x ∈ (a, b] .

Corollary 1. Suppose that f(x) ∈ C[a, b] and Dp
af(x) ∈ C[a, b] for 0 <

p ≤ 1. If Dp
af(x) ≥ 0, for all x ∈ (a, b), then f(x) is nondecreasing for each

x ∈ [a, b]. If Dp
af(x) ≤ 0, for all x ∈ (a, b), then f(x) is nonincreasing for

each x ∈ [a, b].

Theorem 1. There is a unique solution x(t) = (X,Y )
T

to equation (6)
with initial condition (7) on t ≥ 0, and the solution will remain in R2

+.
Furthermore, X and Y are all bounded by Kc.

Proof. We know that the solution on (0,∞) solving the initial value problem
(6)–(7) is not only existence but also unique [18].

From equation (6), we find
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DpX |X=0= bY ⩾ 0, DpY |Y=0= 0.

By Corollary 1, the solution will remain in R2
+. From [2], X and Y are

bounded by Kc.

To evaluate the equilibrium points, let Dpx = 0 and Dpy = 0. Then
E0 = (0, 0), E1 = (K(b−c), 0), andE2 = ( ba ,K(b−c)− b

a ) are the equilibrium
points. To give more detail about the local behavior near the equilibria, we
find the Jacobian matrix of equation (6) at each equilibrium point:

J(E0) =

(
b− c b
0 −c

)
, J(E1) =

(
−(b− c) c− aK(b− c)

0 −b+ aK(b− c)

)
and

J(E2) =

(
−aK(b− c) + b(1− 1

aK ) − b
aK

aK(b− c) + b
aK − 2b+ c −b(1− 1

aK ) + c

)
.

The equilibrium point E0 is locally asymptotically stable, if all of the
eigenvalues λi (i = 1, 2) of the Jacobian matrix J(Ei) for i = 0, 1, 2 satisfy
the following condition [10,21]:

|arg(λi)| >
pπ

2
. (8)

The eigenvalues of J(E0) are λ1 = (b − c) and λ2 = −c. If b ≥ c, then
arg(λ1) = 0, arg(λ2) = π, and E0 is unstable. If b < c, arg(λ1) = arg(λ2) = π,
and equation (8) is correct, then E0 is asymptotically stable.

Now consider the case b > c and the equilibrium point E1. The eigenvalues
of J(E1) are λ1 = −(b − c) and λ2 = −b + aK(b − c). arg(λ1) = π and for
K < Kc, arg(λ2) = π, thus E1 is asymptotically stable. If K > Kc, then E1

is unstable.

Finally, consider the case b > c for the equilibrium point E2. If K > Kc,
then λ1 = −(b − c) and λ2 = b − aK(b − c) are negative eigenvalues and
arg(λ1) = arg(λ2) = π; consequently, E2 is asymptotically stable.

4 Theta method for fractional order models

In this section, theta method (θ − −method) is described and studied for
the numerical solution of fractional–order equation systems by the way of
Hantavirus model. Theta method is known as the weighted method and
general form given by

Dpy(tn) = θf(tn, yn) + (1− θ)f(tn−1, yn−1) (9)
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while θ ∈ [0, 1]. There are two specific values of θ: while θ = 0, we obtain
the forward explicit Euler method and while θ = 1 yields forward implicit
Euler method. Note that θ = 1

2 in (9) corresponds the so–called mid–point
rule and trapezoidal rule, respectively.

For numerical computation the Grünwald–Letnikov (GL) operator is trun-
cated; we fixed a step–size h > 0 and tn = t0 + hn,N = (T − t0)/h.

We put the left–hand–side with the forward discrete derivative with

h−p
n∑

j=0

wp
j (yn−j − y0) = θf(tn, yn) + (1− θ)f(tn−1, yn−1).

Case 1. While θ = 0 on (9), in case we use it for the model equation of
(6), we can get


h−p

n∑
j=0

wp
j (xn−j − x0) = (b− c)xn−1 + byn−1 −

x2
n−1

K −
(
1+aK

K

)
xn−1yn−1,

h−p
n∑

j=0

wp
j (yn−j − y0) = −cyn−1 −

y2
n−1

K −
(
1−aK

K

)
xn−1yn−1.

Here, the left–hand derivatives are Grünwald–Letnikov derivatives.



n∑
j=0

wp
jxn−j − x0

n∑
j=0

wp
j

= hp
[
(b− c)xn−1 + byn−1 −

x2
n−1

K −
(
1+aK

K

)
xn−1yn−1

]
,

n∑
j=0

wp
j yn−j − y0

n∑
j=0

wp
j = hp

[
−cyn−1 −

y2
n−1

K −
(
1−aK

K

)
xn−1yn−1

]
.

In case we leave xn and yn alone on the left side,


xn = hp

[
(b− c)xn−1 + byn−1 −

x2
n−1

K −
(
1+aK

K

)
xn−1yn−1

]
−

n∑
j=1

w
(p)
j xn−j + w

(p−1)
n x0,

yn = hp
[
−cyn−1 −

y2
n−1

K −
(
1−aK

K

)
xn−1yn−1

]
−

n∑
j=1

w
(p)
j yn−j − w

(p−1)
n y0.

(10)

Since w
(α)
1 = −p, we obtain

x̃n−1 = w
(p−1)
1 x0, n = 1 and w

(p−1)
1 x0 −

n∑
j=2

w
(p)
j xn−j , n ≥ 2,
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and similarly we can say for ỹn−1. While

{
w

(p−1)
n x0 −Xn = x̃n−1 + pxn−1,

w
(p−1)
n y0 − Yn = ỹn−1 + pyn−1,

(11)

and

Xn =
n∑

j=1

w
(p)
j xn−j , Yn =

n∑
j=1

w
(p)
j yn−j .

We get (11) in the equations system (10), and we obtain iteration equa-
tions as:


xn = x̃n−1 + pxn−1

+hp
[
(b− c)xn−1 + byn−1 −

x2
n−1

K −
(
1+aK

K

)
xn−1yn−1

]
,

yn = ỹn−1 + pyn−1 + hp
[
−cyn−1 −

y2
n−1

K −
(
1−aK

K

)
xn−1yn−1

]
.

(12)

Case 2. While θ = 1 on (9), use it for Equation (6), we obtain implicit
form 

h−p
n∑

j=0

wp
j (xn−j − x0) = (b− c)xn + byn − x2

n

K −
(
1+aK

K

)
xnyn,

h−p
n∑

j=0

wp
j (yn−j − y0) = −cyn − y2

n

K −
(
1−aK

K

)
xnyn.

In case we leave xn and yn alone on the left side,

xn − hp
[
(b− c)xn + byn − x2

n

K −
(
1+aK

K

)
xnyn

]
+Xn − w

(p−1)
n x0 = 0,

yn − hp
[
−cyn − y2

n

K −
(
1−aK

K

)
xnyn

]
+ Yn − w

(p−1)
n y0 = 0.

While system has implicit form, Newton–Raphson method needed to solve
implicit system by converting to explicit form. Here, the implicit form, xn

and yn connected to the explicit form of the first equation to be able to resort
to Newton–Raphson method:

 f(z) = z +Xn − w
(p−1)
n x0 − hp

[
(b− c)z + bu− z2

K −
(
1+aK

K

)
zu
]
,

g(u) = u+ Yn − w
(p−1)
n y0 − hp

[
−cu− u2

K −
(
1−aK

K

)
zu
]
.
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Regarding to Newton –Raphson method, iterative equations as:

zi+1 = zi −
f(zi)

f ′(zi)
, i = 0, 1, . . . , n,

ui+1 = ui −
g(ui)

g′(ui)
, i = 0, 1, . . . , n.

Here, we can write initial estimations as z0 = xn−1 and u0 = yn−1. Thus
we obtain

zi+1 = zi −
zi−x̃n−1−pz0−hp

[
(b−c)zi+bui−

z2i
K −( 1+aK

K )ziui

]
1−hp[(b−c)− 2zi

K −( 1+aK
K )ui]

,

ui+1 = ui −
ui−ỹn−1−pu0−hp

[
−cui−

u2
i

K −( 1−aK
K )ziui

]
1−hp[−c− 2ui

K −( 1−aK
K )zi]

.

(13)

5 Nonstandard difference schemes methods for
fractional order Hanta model

In this section, we proposed and discussed some NSFD schemes to discretize
the fractional order nonlinear system (6). NSFD schemes applied in combi-
nation with the truncation of the GL operator. NSFD schemes were firstly
proposed by Mickens for Ordinary Differential Equations and successively
studied, for instance, in [22, 23]. The stability analysis of model which is
discretized with nonstandard finite difference scheme is given by [5, 6].

Case 1: As a first nonstandard scheme, for discretization we make the
replacement of the nonlinear term in the right–hand side of (6) by means
of x(t) → x(tn−1), y(t) → y(tn−1), x2(t) → x(tn)x(tn−1), x(t)y(t) →
x(tn)y(tn−1).

Since wp
1 = 1, the discretized model is

xn +Xn − wp−1
n x0 = ϕ(h)

∗
X,

yn + Yn − wp−1
n y0 = ϕ(h)

∗
Y ,

which seem as explicit form and ϕ(h) is a denominator function and could

be selected in a different way. Here, Xn, Yn,
∗
X and

∗
Y are defined as:

Xn =
n∑

j=1

w
(p)
j xn−j , Yn =

n∑
j=1

w
(p)
j yn−j ,
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∗
X = (b− c)xn−1 + byn−1 − (xn−1+yn−1)xn

K − axnyn−1,
∗
Y = −cyn−1 − (xn−1+yn−1)yn

K − axnyn−1,
xn =

K(ϕ(h)(b−c)xn−1+ϕ(h)byn−1−Xn+wp−1
n x0)

K+ϕ(h)(xn−1+yn−1)+Kϕ(h)ayn−1
,

yn =
K(−ϕ(h)cyn−1−aϕ(h)xnyn−1−Yn+wp−1

n y0)
K+ϕ(h)(xn−1+yn−1)

.

The result of explicit nonstandard finite differences scheme is


xn = K(x̃n−1+(p−cϕ(h))xn−1+bϕ(h)(xn−1+yn−1))

K+ϕ(h)(xn−1+yn−1)+aKϕ(h)yn−1
,

yn = K(ỹn−1+(p−cϕ(h))yn−1+aϕ(h)xnyn−1)
K+ϕ(h)(xn−1+yn−1)

,

(14)

where we selected ϕ(h) =
(

exp(h(b−c))−1
b−c

)p
. In [32, 33], authors have chosen

(xy)→ x(t+h)y(t), x2→ x(t)x(t+h) and y2 → y(t)y(t+h) for discretization.

Proposition 1. Let a, b, c,K > 0, b ≤ c, and let step size 0 < h ≤ (p/c)(1/p)

for the schemes have the iterations xn, yn given by the non–negative schemes
for any x0 ≥ 0 and y0 ≥ 0.

Proof. We proceed by induction on n.

Case 2: In the second nonstandard scheme we use the replacement
x(t) → x(tn), y(t) → y(tn), x2(t) → x(tn)x(tn), x(t)y(t) → x(tn)y(tn).
By operating in a similar way as in the previous case for system (6) , we can
see that is implicit form:

xn +Xn − wp−1
n x0 = ϕ(h)

∗∗
X,

yn + Yn − wp−1
n y0 = ϕ(h)

∗∗
Y ,

∗∗
X = (b− c)xn + byn − (xn+yn)xn

K − axnyn,
∗∗
Y = −cyn − (xn+yn)yn

K − axnyn.

If we leave alone to xn on the left side and yn on the right side, we obtain
implicit form: xn − ϕ(h)

∗∗
X +Xn − w

(p−1)
n x0 = 0,

yn − ϕ(h)
∗∗
Y + Yn − w

(p−1)
n y0 = 0.

While Newton–Raphson method is needed, here, the implicit form, xn and
yn connected to the explicit form of the first equation to be able to resort to
the method of Newton–Raphson, we leave alone on the left side:
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 f(z) = z +Xn − w
(p−1)
n y0 − ϕ(h)

[
(b− c)z + bu− z2

K −
(
1+aK

K

)
zu
]
,

g(u) = u+ Yn − w
(p−1)
n u0 − ϕ(h)

[
−cu− u2

K −
(
1−aK

K

)
zu
]
.

Regarding to Newton–Raphson method, the initial estimations as z0 =
xn−1 and u0 = yn−1. In this way, we can obtain


zi+1 = zi −

zi−x̃n−1−pz0−ϕ(h)

[
(b−c)zi+bui−

z2i
K −( 1+aK

K )ziui

]
1−ϕ(h)[(b−c)− 2zi

K −( 1+aK
K )ui]

,

ui+1 = ui −
ui−ỹn−1−pu0−ϕ(h)

[
−cui−

u2
i

K −( 1−aK
K )ziui

]
1−ϕ(h)[−c− 2ui

K −( 1−aK
K )zi]

.

(15)

6 Numerical simulations

In this section, numerical simulations of fractional–order Hantavirus model
are presented by the solution of Theta method and NSFD schemes that are
explicit and implicit form. We choose a = 0.1, b = 1, and c = 0.5 as used by
study of [2]. The initial values is considered as (x0, y0) = (25, 15); we fixed
a step–size h = 0.01 and N = 2000. Various denominator functions listed

in [29], we took into account the ϕ(h) =
(

exp(h(b−c))−1
b−c

)p
. We choose p = 1

in Figure 1, p = 0.6 in Figure 2, p = 0.3 in Figure 3, p = 1 in Figure 4, and
(x0, y0) = (10, 10) and K = 20 used in Figure 5. In Figures 1–4, the top
graphs in order of left–to–right are theta explicit and theta implicit methods,
the bottom graphs in order of left–to–right are NSFD explicit and NSFD
implicit methods. Figure 5 shows that for p = 1, a = 0.1, b = 1 , c = 0.5
for x(t), relative errors between numerical schemes and exponential matrix
method in [39]. All figures denoted the results of the simulation based on
equation systems (12), (13), (14), and (15) the values are used as mentioned
above. Equation systems (12), (13), (14), and (15) correspond to equations
in (1).

We compared CPU times of numerical methods on the Table 1. Here, we
used N = 1000 for all methods except Runge Kutta methods that we used
N = 50. As we have seen in the Table 1, we can say, in case each explicit
and implicit methods evaluated between oneself has not extremely difference.
However we cannot say the same for the Runge Kutta. On the Table 2, we
denoted qualitative results of the fixed point E2 for different time step sizes
for N = 1000, p = 1, (x0, y0) = (25, 15), and K = 40.
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Figure 1: For p=1, Theta and NSFD Schemes in explicit and implicit form:

(a) Theta–explicit (b) Theta–implicit (c) NSFD–explicit (d) NSFD–implicit
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Figure 2: For p=0.6, Theta and NSFD Schemes in explicit and implicit form:
(a) Theta–explicit (b) Theta–implicit (c) NSFD–explicit (d) NSFD–implicit
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Figure 3: For p=0.3, Theta and NSFD Schemes in explicit and implicit form:

(a) Theta–explicit (b) Theta–implicit (c) NSFD–explicit (d) NSFD–implicit
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Figure 4: Phase–portraits for p = 1, N = 2000, a = 0.1, b = 1 , c = 0.5, h = 0.01,

(x0, y0) = (25, 15), K = 40
(a) Theta–explicit (b) Theta–implicit (c) NSFD–explicit (d) NSFD–implicit
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Figure 5: For p = 1, a = 0.1, b = 1 , c = 0.5, (x0, y0) = (10, 10), K = 20, for x(t),
relative errors between numerical schemes and exponential matrix method in [39]

−−−− EMM and Theta-explicit
. . . . . . EMM and NSFD implicit
............. EMM and Theta-implicit

. . . . . . EMM and NSFD-explicit

Table 1: CPU times (seconds) for (x0, y0) = (25, 15), h = 0.01

p Theta Theta NSFD NSFD Runge Kutta
Explicit Implicit Explicit Implicit

0.3 1.912602 2.216342 2.259337 1.813677 3.597516
0.6 1.909790 2.522203 2.331288 1.77084 3.6738
1 1.86862 2.273820 4.053474 1.767188 4.222919

Table 2: Qualitative results of the fixed point E2 for different time step sizes for
N = 1000, P = 1, (x0, y0) = (25, 15),K = 40(Con. and Div., resp., Convergence and

Divergence)

h Theta Theta NSFD NSFD Runge Kutta
Explicit Implicit Explicit Implicit

0.01 Con. Con. Con. Con. Con.
0.1 Con. Con. Con. Con. Con.
1 Div. Con. Div. Con. Div.
10 Div. Con. Div. Con. Div.
100 Div. Con. Div. Con. Div.
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7 Conclusion

In this paper, fractional–order form of the Hantavirus model is introduced.
The stability of the equilibrium points is studied. Two numerical methods
have been presented in the explicit and implicit form for solving fractional
order Hantavirus epidemic model. When we use implicit solutions, we need
to use the Newton–Raphson method to solve implicit system by converting
to explicit form. For NSFD schemes, one denominator function and different
nonlocal terms have been proposed, and the results have been compared
with each other. As it seen clearly that explicit and implicit NSFD methods
should be used ultimately depending on the choices of the nonlocal terms.
On the other hand, explicit methods produce the same accuracy, but with
less computational effort and time than implicit methods.
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کسری مرتبه از هانته ویروس مدل برای ضمنی و صریح های طرح

ارسلان٢ داملا و انگان١ یکیت مولود

ریاضی گروه دمیرل، سلیمان دانشگاه اسپارتا، ترکیه، ١
کاربردی و طبیعی علوم دانشکده دمیرل، سلیمان دانشگاه اسپارتا، ترکیه، ٢

١٣٩٧ اردیبهشت ٢۶ مقاله پذیرش ،١٣٩٧ فروردین ٢٩ شده اصلاح مقاله دریافت ،١٣٩۴ شهریور ٢٧ مقاله دریافت

: چکیده
های طرح از برخی است. شده معرفی ها موش جمعیت برای کسری مرتبه از مدل یک مقاله، این در
دستگاه عددی حل برای (NSFD) استاندارد غیر متناهی تفاضلات و تتا های روش مانند ضمنی و صریح
با ها روش این است. شده اجرا هانته اپیدمی ویروس مدل نام به خطی غیر معمولی دیفرانسیل معادلات
مرتبه از های سیستم حالت در را جواب بودن مثبت خواص روش این که است شده بحث و شده مقایسه هم
روش عددی نتایج است. شده تشریح نمودار چند از استفاده با عددی بهای جوا کنند. می حفظ را صحیح
به کسری مرتبه از هانته ویروس مدل برای که زمانی ها روش این که دهد می نشان ضمنی و صریح های

هستند. خوبی دقت دارای و آسان شوند می برده کار

دستگاه استاندارد؛ غیر متناهی تفاصلات روش تتا؛ روش ضمنی؛ و صریح های روش : کلیدی کلمات
ها. موش جمعیت مدل کسری؛ مرتبه از خطی غیر دیفرانسیل معادلات
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