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Augmented Lagrangian method for
finding minimum norm solution to the
absolute value equation

S. Ketabchi* and H. Moosaei

Abstract

In this paper, we give an algorithm to compute the minimum 1-norm
solution to the absolute value equation (AVE). The augmented Lagrangian
method is investigated for solving this problem. This approach leads to an
unconstrained minimization problem with once differentiable convex objec-
tive function. We propose a quasi-Newton method for solving unconstrained
optimization problem. Computational results show that convergence to high
accuracy often occurs in just a few iterations.
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1 Introduction

As shown in [1,2,9-11], many mathematical programming problems can be
reduced to LCP which is equivalent to absolute value equation as follows
[7,8,12]:

Az —|z| = b, (1)

where A € R™*™ and b € R™ are given, and |z| denotes the component-wise
absolute value of vector z € R™.
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The absolute value equation (1) seems to be a useful tool in optimization
since it subsumes the linear complementarity problem and thus also linear
programming and convex quadratic programming.

In general, AVE may have a finite number of solutions (at most 2™ ) or
infinitely many solutions, if it has solutions [7]. In such cases, the selection of
a particular solution may be important and a natural choice is the solution
with the minimum norm [4,5,9].

In this paper, we consider AVE in the case where it has multiple (e.g., expo-
nentially many) solutions; we try to compute its minimum 1 —norm solution.

In [5], for finding minimum 2 — norm solution of AVE, need a solution
of AVE and special assumptions on A. But, in this paper to find minimum
1 — norm solution of AVE, not only do not need a solution of AVE but also
do not need any special assumptions on A.

Consider the following problem :

min ||z|;
TER™
subject to Az — |z| = b. (2)

Motivated by the study of minimum 1—norm solution of the AVE formulated
as a linear programming problem. To solve this linear programming problem,
we suggest augmented Lagrangian method.

This paper is organized as follows. Minimum norm solution of AVE is
described in Section 2. The augmented Lagrangian method is discussed in
Section 3. In Section 4 compute minimum norm solution for some randomly
generated AVE to demonstrate the effectiveness of our method. Concluding
remarks are given in Section 5.

We now describe our notations. Let a = [a;] be a vector in R". By a4
we mean a vector in R"™ whose ith entry is 0 if a; < 0 and equals a; if a; > 0.
By AT we mean the transpose of matrix A, and V f(zo) is the gradient of f
at xg. For two vectors z and y in the n—dimensional real space, 7y will
denote the scalar product. For z € R™, ||z| and ||z||; denote 2—norm and
1—norm respectively and |z| will denote the vector in R™ of absolute values
of components of x.

2 Minimum Norm Solution of AVE

In this section we first mention the cases in which the AVE has multiple
solutions. Then, we examine the problem (1) to obtain its minimum norm
solution.
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Proposition 1. (Ezistence of 2" solutions). Ifb < 0 and || A||s < v/2 where
v = ¢/d, ¢ = min;|b;|, d = max;|b;|, then the AVE has exactly 2™ distinct
solutions, each of which has no zero components and a different sign pattern.

Proof. See [7]. O
Consider the absolute value equation (1) for which A = —leye(n) and
b = —2ones(n,1), it is obvious that, it has exactly 2" distinct solutions.

Now, consider for example of an AVE that has infinite number of solutions.
Consider the absolute value equation (1) for which A = eye(n) and b =
zeros(n,1). Obviously, in this case, every = for which « > 0 is a solution of
AVE. Let’s again consider the problem (2). This problem can be rewritten
in the equivalent form:

min [lp—gqlli, st Ap—Aq—Ip—1Iq=>b,  p,q=0, (3)
p,qER™
where p = —‘z‘;m and ¢ = Ll;gﬁ.
Now (3) is equivalent to linear programming problem as follows:
min ¢/ X, st. BX=0b, X >0, (4)
X€ER®
where X =[p ¢|T,c=le e and B=[A-1 —-A-1I|.
To solve the problem (4), we use augmented Lagrangian method, which
is described in the next section.

3 Augmented Lagrangian Method

Now, we briefly discuss applications of augmented Lagrangian method to the
linear programming subproblem (4).

In the augmented Lagrangian method, an unconstrained maximization
problem is solved which gives the projection of a point on the solution set of
the subproblem

1 ~ 2
min 2 e -7 )
X*:{xGR":Ax:b,ch:f*, x> 0pt.
The Lagrange function for the problem (5) is
1
L(z,u,a,T) = 3 |z —2|? —u?(Az —b) + a (Tz — f.),

where u € R™, o« € R are Lagrange multipliers and Z is considered as a
fixed parameter. The dual problem of (5) is
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max max min L(x,u,q,T). (6)
u€R™ a€R! zERY

The optimality conditions of the inner minimization of the problem (6) is

Vi (z,u,0,%) =2 —% — ATu+ ac >0, (7)
v (x -7 — ATu+ac) =0, x> 0. (8)

It follows from (7) and (8) that the solution of this minimization problem is
given in the following form:

= (7 +ATu —ac)y, (9)

we replace z by (% + ATu — ac)y into L(x,u,a,Z) and obtain the dual
function

_ 1 _ 1.,
O(ua,7) = b'u— 3 | @+ ATu—ac). |? —afe+ 5 |5 |*.

Hence the problem (5) is reduce to its dual problem

max max ®(u, a, ). (10)
uER™ ae R
This problem is an optimization problem without any constrain and its ob-
jective function contains an unknown value f,.. By [3] there exists a positive
number o, > 0 such that, for each o > «, the projection x of the arbitrary
vector T € R™ onto X, can be obtained as following:

v = (2 +a(ATu(a) - ), (11)

where u(a) is the solution of the problem (10), such that a € R, a >
is fixed.

We note that, the function ®(u,a, T) is the augmented Lagrangian func-
tion for dual problem of (5) (see [3]),

fe=maxblu, U={uecR™:ATu<c}. (D)
uelU
The function ®(u,q,Z) is piecewise quadratic, convex and just has the

first derivative, but it is not twice differentiable. Suppose that s and ¢ are
arbitrary points in R™. Then for V&, (u, «, Z) we have

IV@u(s, o, 7) = Vu(t, o, 7)|| < Al AT l]s — ¢, (D)

this means that V& is globally Lipschitz continues with constant K =
| A||[|AT||. Thus for this function generalized Hessian exists and is defined
the m x m symmetric positive semidefinite matrix [6,9].

Now we introduce the following iterative process :
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1
k+1 . T k T 2
= ~bTu+ — + = 1
u argunellr}l{ b u 5 || (.’E CY(A u C))+ H 5 ( 2)
Z‘k - (ij + OZ(A Uk L C))+, (13)

where 4 and 2 are arbitrary starting point.

Theorem 2. Let the solution set X, of the problem (5) be nonempty. Then,
for all « > 0 and an arbitrary initial 2°, the iterative process (12), (13)
converges to . € X, in finite number of step k and the primal minimum
norm solution T, was obtained after the first iteration from above process,
i.e. k=1. Furthermore, u, = u*t! is an exact solution of the dual problem
(D).

The proof of the finite global convergence is given in [6]

Considering the advantage of the differentiability of the objective func-
tion of problems (12) and (D) allow us to use a quadratically convergent
quasi-Newton algorithm with an Armijo stepsize [6] that makes the algo-
rithm globally convergent.

We will now present a quasi-Newton-Armijo algorithm for solving the
problem (12).

Algorithm 1 Newton method with the Armijo rule

Choose any ug € R™ and tol > 0

i=0;

while ||V f(u;)| > tol

Choose «; = maz{s, sd,s62,...} such that

Flui) — fu + di) > —aupuV f(u;) " dy,

where d; = —V?2 f(u;) "'V f(u;), s > 0 be a constant, § € (0,1) and p € (0,1).
Uit1 = u; + oid;

i=1i+1;

end

In this algorithm, the Hessian may be singular, thus we used a modified
Newton direction as follows :

—(V2f(wi) + 61) 'V f (i),

where 4 is a small positive number (§ = 10~%), and I,,, is the identity matrix
of order m.
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4 Numerical Experiments

In this section, we present some numerical results using the previous process
on various randomly generated system (see Table 1 ) to illustrate the per-
formance of the proposed algorithm. The algorithm has been tested using
MATLAB 7.9.0 on a Core 2 Duo 2.53 GHz with main memory 4 GB.
System generator creates a random matrix A for a given n, with singular
value greater than or equal to 1. Then, we choose a random vector = from a
uniform distribution on [0, 100]. Finally, we computed b = Az — |z|. These
systems are generated using the following MATLAB code:

%Sgen: Generate random system A*x — |z| = b with infinitely many

solutions;
n = input(’ Entern :');
= spdiags(sign((rand(n,1) — 2 x rand(n,1))) + 2,0,n,n); % generates
matrices in the MATLAB sparse storage organization.
x =10 % ((rand(n,1) — rand(n,1)));
b= Axx — abs(x);

Computational results for the test problems taken from our algorithm are
given in Table 1.

The first column indicates the size of matrix A and the second column
headed f indicates ||Az* — |z*| — b|), the third column indicates minimum
1-norm solution and the forth column indicates 1-norm solution and the final
column indicates CPU time.

Table 1: Minimum norm solution of Az — |z| = b.

n f =1l lo*li time(sec)

10 0 0 2.3057e+003 0.13
100 1.4211e-014  3.7329e+003 1.3824e+004 0.49
200 1.1369e-013  1.2783e+004 3.4507e+004 0.73
300 5.6843e-014 1.5145e+004 5.7900e+004 1.45
400  5.6843e-014 1.2150e+004 6.6566e+004 1.88
500 1.1369e-013 1.8853e+004 8.6618e+004 2.78
600 1.1369e-013  2.2635e+004 9.4418e+004 4.32
700 1.1369e-013  2.5670e+004 1.1879e+005 5.66
800 1.1369e-013 3.6042e+004 1.3374e+005 6.89
900 1.1369e-013 3.7086e+004 1.5515e+005 11.02
1000 1.1369e-013  4.4200e+004 1.6893e+005 11.38
2000 1.1369e-013  7.5278e+004  3.3016e+005 74.18
3000 1.1369e-013 1.2762e+005 4.8708e+005 205.81
4000 1.1369e-013 1.7599e+005 6.7238e+005 493.59
5000 1.1369e-013 2.1200e+005 8.2995e+005 875.87
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5 Conclusion

In this paper, the augmented Lagrangian algorithm was proposed and used
for solving the minimum 1-norm solution to the absolute value equation.
With this idea, we obtain the problem with fewer variables and smaller in
size than the nonlinear problem (3). To obtain the solution to the reduced
problem, we have proposed an extension of Newton’s method with the step
size chosen by the Armijo rule. As the numerical results show, this algorithm
has appropriate speed in most of the problems and, specifically this can be
observed in problems with a large sparse matrix A.
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