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Singularly perturbed two-point boundary
value problem by applying exponential

fitted finite difference method

N. Kumar*, R. Kumar Sinha and R. Ranjan

Abstract

The present study addresses an exponentially fitted finite difference method
to obtain the solution of singularly perturbed two-point boundary value
problems (BVPs) having a boundary layer at one end (left or right) point
on uniform mesh. A fitting factor is introduced in the derived scheme
using the theory of singular perturbations. Thomas algorithm is employed
to solve the resulting tri-diagonal system of equations. The convergence of
the presented method is investigated. Several model example problems are
solved using the proposed method. The results are presented with terms of
maximum absolute errors, which demonstrate the accuracy and efficiency
of the method. It is observed that the proposed method is capable of
producing highly accurate results with minimal computational effort for a
fixed value of step size h, when the perturbation parameter tends to zero.
From the graphs, we also observed that a numerical solution approximates
the exact solution very well in the boundary layers for smaller value of ε.
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1 Introduction

Singular perturbation problems are of mainly deal in fluid mechanics and
other areas of practical/applied mathematics. The solution of the singularly
perturbed boundary value problems (BVPs) has a multi-scale nature. The
solution varies rapidly in some parts of the domain and varies slowly in some
other parts of the domain. The numerical solution of singular perturbation
problems (SPPs) is far from trivial, because of the boundary layer behav-
ior of the solution. There are many physical situations in which the sharp
changes occur inside the domain of interest, and the narrow regions across
which these changes take place are usually referred as Navier–Stokes flow
problems, involving high Reynolds number [4, 17, 28], mathematical models
of liquid crystal materials and chemical reactions, control theory, and elec-
trical networks [6, 7, 30]. These quick shifts can be managed by fast scales,
magnified scales, or stretched scales, but not by slow scales. The domain of
integration is typically divided into two subdomains, with a distinct scheme
being applied to each subdomain as a common approach to solving this type
of problem. In recent years, a large number of analytical methods have
been proposed (see [22, 21, 2, 20, 19, 11, 16, 29]. Numerical methods based
schemes with and without fitting factors on boundary value techniques and
initial value techniques are given in [9, 1, 12, 13, 23, 14]. Phaneendra and
Lalu[24] presented Gaussian quadrature for two-point singularly perturbed
BVPs with the exponential fitting with a layer at one endpoint, dual bound-
ary layers, and internal boundary layers. In this paper, the given BVP is
reduced into an equivalent first-order differential equation with the pertur-
bation parameter as a deviating argument. Then, the Gaussian two-point
quadrature technique with exponential fitting is implemented to solve the
first-order equation with deviating parameters. Mishra and Saini [18] stud-
ied the Liouville–Green transform to solve a singularly perturbed two-point
BVP with a right-end boundary layer. Articles [3, 5, 8, 9, 31] proposed differ-
ent numerical approaches combining fitted mesh methods and fitted operator
methods employed by several researchers for solving SPPs, whereas Kadal-
bajoo and Kumar [10] presented a detailed outline on the numerical methods
for solving SPPs. Indeed these existing numerical methods are mostly based
on fitted operator techniques or use reasonable theoretical information re-
garding the solutions, which forms a limitation of these approaches. An
efficient method of numerical integration for a class of singularly perturbed
two-point BVPs at one endpoint (either left or right) has been presented in
[25]. Ranjan, Prasad, and Alam [27] developed a simple method of numerical
integration for a class of singularly perturbed two-point BVPs at one end-
point (either left or right). Ranjan and Prasad [26] proposed a fitted finite
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713 Singularly perturbed two-point boundary value problem ...

difference scheme for solving singularly perturbed two-point BVPs having
boundary layer at left or right endpoints. Madhu Latha, Phaneendra, and
Reddy [15] presented a numerical solution of SPP using numerical integration
with an exponential fitting factor.

In view of the wealth of literature on SPPs, we raise the question of
whether there are other ways to attack SPPs, namely ways that are very
easy to use and ready for computer implementation. In response to this
need for a fresh approach to SPPs, we propose and illustrate in this paper
a fitted finite difference technique for singularly perturbed two-point BVPs
with a boundary layer on the left (or right) end of the underlying interval.
Numerical experience with several linear examples is described.

The paper is organized as follows: Section 2 presents the description of the
presented new effective method to solve a second-order singularly perturbed
two-point BVP. In Section 3, the convergence of the presented method is
investigated. To demonstrate the accuracy and efficiency of the presented
method, numerical experiments are carried out for several model test prob-
lems, and the results are shown in tables in Section 4. Finally, the discussions
and conclusions are presented in the last section 5.

2 Statement of the problems

Consider the singularly perturbed two-point BVPs of the following type:

ε v′′(t) + r(t)v′(t) + s(t)v(t) = ψ(t) on Ω = [0, 1], (1)

subject to the boundary conditions and interval conditions,

v(0) = α, v(1) = β, (2)

where ε is a small positive perturbation parameter (0 < ε << 1). Further-
more, the functions r(t), s(t), andψ(t) are continuously differentiable func-
tions in [0, 1], where α and β are constant. In the scenario where we assume
that r(t) ≥ M > 0 holds true for the entire interval [0, 1], with M repre-
senting a positive constant, the boundary layer is expected to occur in the
vicinity of t = 0. On the other hand, if we consider that r(t) ≤M < 0 holds
throughout the interval [0, 1], with M being a negative constant, then the
boundary layer is anticipated to be located near t = 1.
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2.1 Description of the method for left-end boundary
layer problems

In this subsection, we describe the proposed method for the solution of the
problem (1)–(2) having boundary layer at left-end point of the interval con-
sidered.

The solution of (1) with (2) is of the following form (see . 22–261[22]):

v(t) = v0(t) +
r(0)

r(t)
(α0 − v0(0)) e

−
∫ t
0 (

r(t)
ε − s(t)

r(t) )dt + o(ε), (3)

where v0(t) denotes the simplified problem’s solution:

r(t)v′0(t) + s(t)v0(t) = ψ(t), v0(1) = β. (4)

By considering the Taylor series expansions of r(t) and s(t) around the point
t = 0 up to their respective first terms, we can simplify (3) as follows:

v(t) = v0(t) + (α0 − v0(0)) e
−( r(0)

ε − s(0)
r(0) )t + o(ε). (5)

Taking the limit as h → 0 and applying (3) to the point t = ti = ih, i =
0, 1, 2, . . . , N , we obtain

lim
h→0

v(ih) = v0(0) + (α0 − v0(0)) e
−
(

r2(0)−εs(0)
r(0)

)
iρ
+ o(ε), (6)

where ρ = h/ε, the first and second-order approximations have been used as
below:

v′i =
3vi+1 − 2vi − vi−1

4h
, (7)

v′′i =
vi+1 − 2vi + vi−1

h2
. (8)

Substituting (7) and (8) in (1), we have

ε

[
vi+1 − 2vi + vi−1

h2

]
+ ri

[
3vi+1 − 2vi − vi−1

4h

]
+ sivi = ψi. (9)

Introducing the fitting factor σ (ρ) into the aforementioned approach, we
obtain the following result:

σε

[
vi+1 − 2vi + vi−1

h2

]
+ ri

[
3vi+1 − 2vi − vi−1

4h

]
+ sivi = ψi. (10)
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The determination of the fitting factor σ(ρ) aims to ensure that the solution of
the difference scheme described in (10) achieves uniform convergence towards
the solution of (1) with (2).

By multiplying (10) by h and considering the limit as h −→ 0, the result
of (10) is as follows:

σ

ρ
[vi+1 − 2vi − vi−1] +

r(0)

4
[3vi+1 − 2vi − vi−1] = 0. (11)

Let µ = r2(0)−εs(0)
r(0) . By using (6), we get

limh→0 (v(ih− h) + v(ih+ h)− 2v(ih)) = (α0 − v0(0)) e
−µiρ

(
eµρ + e−µρ − 2

)
,

limh→0 (3v(ih+ h)− 2v(ih)− v(ih− h)) = (α0 − v0(0)) e
−µiρ

(
3e−µρ − 2− eµρ

)
.

By using the above equations in (11), we get

σ (ρ) =
r(0)ρ

2
coth

((
r2(0)− εs(0)

)
ρ

2r(0)

)
− r(0)ρ

4
, (12)

which is a required fitting factor σ (ρ) .
Finally, from (11) with the value of σ(ρ) given by (12), we obtain the following
three-term recurrence relationship:

Pivi−1 −Qivi +Rivi+1 = Hi (i = 1, 2, 3, . . . , N − 1), (13)

where
Pi =

σε
h2 − ri

4h ,
Qi =

2σε
h2 + 2ri

4h − si,
Ri =

σε
h2 + 3ri

4h ,
Hi = ψi.

Equation (13) generates an (N − 1) equations system involving (N − 1) un-
determined ranging from v1 to vN−1. These (N−1) equations together with
the boundary conditions equation (2), are sufficient to solve the obtained
tri-diagonal system with the help of an efficient solver called the Thomas al-
gorithm, commonly called as the “Discrete Invariant Imbedding algorithm”.

2.2 Description of the method for right-end boundary
layer problems

In this subsection, we will describe the proposed method for the solution of
the problem (1)–(2) having boundary layer at right-end point of the interval
considered.
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The solution of (1) with (2) is of the following form . 22–261[22]):

v(t) = v0(t) +
r(0)

r(t)
(α0 − v0(1)) e

−
∫ t
0 (

r(t)
ε − s(t)

r(t) )dt + o(ε), (14)

where y0(t) denotes the simplified problem’s solution:

r(t)v′0(t) + s(t)v0(t) = ψ(t), v0(1) = β. (15)

By considering the Taylor series expansions of r(t) and s(t) around the point
t = 0 up to their respective first terms, we can simplify (14) as follows:

v(t) = v0(t) + (α0 − v0(0)) e
−( r(1)

ε − s(1)
r(1) )t + o(ε). (16)

Taking the limit as h → 0 and applying (3) to the point t = ti = ih, i =
0, 1, 2, . . . , N , we obtain

limh→0 v(ih) = v0(0) + (α0 − y0(0)) e
−
(

r2(1)−εs(1)
r(1)

)
iρ
+ o(ε), (17)

where ρ = h/ε.
After multiplying (10) by h and taking the limit as h → 0, (10) converts

into the following form:

σ

ρ
[vi+1 − 2vi − vi−1] +

r(0)

4
[3vi+1 − 2vi − vi−1] = 0. (18)

Let µ = r2(0)−εs(0)
r(0) . By using (17), we get

limh→0 (v(ih− h) + v(ih+ h)− 2v(ih)) = (α0 − v0(1)) e
−µiρ

(
eµρ + e−µρ − 2

)
,

limh→0 (3v(ih+ h)− 2v(ih)− v(ih− h)) = (α0 − v0(1)) e
−µiρ

(
3e−µρ − 2− eµρ

)
.

By substituting the aforementioned equations into (18), we get

σ (ρ) =
r(0)ρ

2
coth

((
r2(1)− εs(1)

)
ρ

2r(1)

)
− r(0)ρ

4
, (19)

which is a required fitting factor σ (ρ) for right-end boundary layer problem.

3 Convergence analysis

This section focuses on the analysis of the convergence of the method.

Definition 1 (Consistency). Let

ϕi[v] = Lhv(ti)− Lϕv(ti), i = 1, 2, . . . , N.
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In this context, v denotes a smooth function defined on the interval I = [0, 1],
and Lh represents the discrete difference operator. Consequently, the differ-
ence equation (13) exhibits consistency with the corresponding differential
equation (1)–(2), if

|ϕi[v]| → 0 as h→ o.

The quantities ϕi[v], i = 1, 2, 3 . . . , N is called the local truncation (or local
discretization) errors.

Definition 2. The differential equation (13) is said to possess local pth-order
accuracy when, for suitably smooth data, there exists a positive constant C
that remains independent of h and ε such that

max1≤i≤N |ϕi[v]| ≤ Chp.

The agreement between the differential equation (13) and (1)–(2), along
with its locally second-order accuracy, is established through the lemma pro-
vided below.

Lemma 1. If v ∈ C2(I), then

|ϕi[v]| ≤ maxti−1≤t≤ti+1

{
rih

4
|v′′i |

}
+O(h2), i = 1, 2, 3, . . . , N − 1.

Proof. By definition,

ϕi = σε

{
vi+1 − 2vi + vi−1

h2
− v′′i

}
+

{
3vi+1 − 2vi − vi−1

4h

}
,

ϕi = σε

{
h2

12
vivi +

h4

360
vvii + · · ·

}
+ ri

{
h

12
v′′i +

h2

3!
y′′′i + · · ·

}
,

|ϕi| = max
ti−1≤t≤ti+1

{
σεh2

12
|vivi |

}
+ max

ti−1≤t≤ti+1

{
rih

4
|v′′i |

}
,

|ϕi| ≤ max
ti−1≤t≤ti+1

{
rih

4
|v′′i |

}
+O(h2),

|ϕi| ≤ O(h). i = 1, 2, 3, . . . , N − 1.

As a result, the intended outcome is attained.

We will now examine the proposed method’s convergence across the entire
interval range 0 ≤ t ≤ 1. We write the tridiagonal system (13) in the matrix-
vector form

WV = D, (20)

where W = (aij), 1 ≤ i, j ≤ N − 1 is a tridiagonal matrix of order N − 1
with
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ai,i−1 = σε− rih

4
,

ai,i = −2σε− 2hri
4

+ sih
2,

ai,i+1 = σε+
3hri
4
,

and D = (di) is a column vector with di = h2ϕi for i = 1, 2, 3, . . . , N −1 with
local truncation error ϕi:

|ϕi| ≤ O(h). (21)

We also have
WV̄ − ϕ(h) = D, (22)

where V̄ = (V̄0, V̄1, V̄2, V̄3, . . . , V̄N )t and ϕ(h) = (ϕ1(h), ϕ2(h), ϕ3(h), . . . , ϕN (h))t

stands for the local truncation error and the real solution, respectively. (20)
and (22) give us

W (V̄ − V ) = ϕ(h). (23)

Thus the error equation is
WE = ϕ(h), (24)

where E = V̄ −V = (e0, e1, e2, . . . , eN )t. If S∗
i is the total of the components

in the ith row of W , then

S∗
1 =

∑N−1
j=1 a1,j =

−σε
h2 − r1

4h + s1,

S∗
N−1 =

∑N−1
j=1 aN−1,j =

−σε
h2 − 3rN−1

4h + sN−1,

S∗
i =

∑N−1
j=1 ai,j = si = Bi0.

Since 0 < ε << 1, The matrix W is irreducible and monotone for sufficiently
small h. As a result, W−1 must exist and contain nonnegative elements.
Therefore, we have from (24) that

E =W−1ϕ(h), (25)
∥E∥ ≤ ∥W−1∥∥ϕ(h)∥. (26)

Let āki represent the (ki)th components of W−1. Since āki ≥ 0, we have
from the operations on matrices:

N−1∑
j=1

ākiS
∗
i = 1, k = 1, 2, . . . , N − 1. (27)

Therefore, its follows

N−1∑
j=1

āki ≤
1

min0≤i≤N−1S∗
i

=
1

Bi0
≤ 1

|Bi0|
, (28)
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for some i0 between 1 and N − 1, and Bi0 = qi.
Therefore, from (21), (25), and (27), we get

ej =

N−1∑
i=1

ākiϕi(h), j = 1(1)N − 1, (29)

which implies
ej ≤

O(h)

|qi|
, j = 1(1)N − 1. (30)

Consequently, by applying the definitions and (29), we obtain:

∥E∥ = O(h).

This implies that the purposed method is the first-order rate of convergence
on uniform mesh. As above, we can apply the same procedure for showing
the purposed method is of first-order rate of convergence on uniform mesh
for the right layer problem.

4 Numerical illustrations

The effectiveness of the purposed method has been demonstrated by imple-
menting it on the three linear SPPs at left-end boundary layer as well as
one problem involving a right-end boundary layer and presented the compu-
tational results in the tables in terms of the maximum absolute errors EN

ε .
These examples have been chosen because they have been widely discussed in
literature. For various values of mesh point N and perturbation parameter ε,
the EN

ε are defined by EN
ε = max

0≤i≤N−1
[|v(ti)− vi|], where v(ti) and vi denote

the exact and approximate solution, respectively. The double mesh principle
is used to calculate the rate of convergence defined as rNε = log2

(
EN

ε

E2N
ε

)
. The

purposed method is capable of achieving uniform results, when perturbation
parameter ε tends to 0 for any fixed value of the mesh size h.

Example 1. First, consider the following homogeneous SPP from [15]:

εv′′(t) + v′(t)− v(t) = 0, t ∈ [0, 1],

with boundary condition v(0) = 1 and v(1) = 1.
The exact solution is given by

v(t) =
(em2 − 1)em1t + (1− em1)em2t

em2 − em1
,

where m1 =
(−1 +

√
1 + 4ε)

2ε
and m2 =

(−1−
√
1 + 4ε)

2ε
.
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The maximum absolute errors for various values of N and singular per-
turbation parameter ε are presented in Table 1 for example 1. It can be easily
observed from Table 1 that the maximum absolute errors tends uniformly,
when the singular perturbation parameter ε tends to 0, for any fixed value of
N = 1/h. Also, rates of convergence presented in Table 1 show that the pur-
posed scheme is capable of producing almost first-order accurate uniformly
convergent solution. In Figure 1, we present our solution and the exact solu-
tion for various values of ε and a fixed value of N . Clearly, as shown in the
figure, the numerical solution and the exact solution are very close within the
boundary layers for smaller values of ε.

Example 2. Consider the following non-homogeneous SPP involving a con-
stant term f(t) [25, 15]:

εv′′(t) + v′(t) = 2, t ∈ [0, 1],

with boundary condition v(0) = 1 and v(1) = 1. The exact solution is given
by v(t) = 2t+ 1−et/ε

et/ε−1
.

The maximum absolute errors for various values of N and singular per-
turbation parameter ε are presented in Table 2 for example 2. It can be easily
observed from Table 2 that the maximum absolute errors tends uniformly,
when the singular perturbation parameter ε tends to 0, for any fixed value
of N = 1/h. In Figure 2, we present our solution and the exact solution for
various values of ε and a fixed value of N . Clearly, as shown in the figure, the
numerical solution and the exact solution are very close within the boundary
layers for smaller values of ε.

Example 3. Consider the following non-homogeneous SPP involving a vari-
able term f(t) [25, 15]:

εv′′(t) + v′(t) = 1 + 2t, t ∈ [0, 1],

with boundary condition v(0) = 1 and v(1) = 1. The exact solution is given
by v(t) = 1−e−t/ε

1−e1/ε
(2ε− 1) + t(t+ 1− 2ε).

The maximum absolute errors for various values of N and singular per-
turbation parameter ε are presented in Table 3 for example3. It can be easily
observed from Table 3 that the maximum absolute errors tends uniformly,
when the singular perturbation parameter ε tends to 0, for any fixed value of
N = 1/h. Also, rates of convergence presented in Table 3 show that the pur-
posed scheme is capable of producing almost first-order accurate uniformly
convergent solution. In Figure 3, we present our solution and the exact solu-
tion for various values of ε and a fixed value of N . Clearly, as shown in the
figure, the numerical solution and the exact solution are very close within the
boundary layers for smaller values of ε.
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Example 4. Lastly, consider the following homogeneous SPP at right-end
boundary layer [25, 26, 15]:

εv′′(t)− v′(t)− (1 + ε)v(t) = 0, t ∈ [0, 1],

with boundary condition v(0) = 1+exp(−(1+ε)/ε) and v(1) = 1+1/e. The
exact solution is given by v(t) = e(1+ε)(t−1)/ε + e−t.

The maximum absolute errors for various values of N and singular per-
turbation parameter ε are presented in Table 4 for Example 4. It can be
easily observed from the Table 4 that the maximum absolute errors tends
uniformly, when the singular perturbation parameter ε tends to 0, for any
fixed value of N = 1/h. Also, rates of convergence presented in Table 4 show
that the purposed scheme is capable of producing almost first-order accurate
uniformly convergent solution. In Figure 4, we present our solution and the
exact solution for various values of ε and a fixed value of N . Clearly, as
shown in the figure, the numerical solution and the exact solution are very
close within the boundary layers for smaller values of ε.

Table 1: Computational results in terms of maximum absolute errors for various values
of N and ε and the rate of convergence rNε for Example 1

N 16 32 64 128 256 512
ε = 10−5 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−6 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−7 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−8 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−9 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224

Table 2: Computational results in terms of maximum absolute errors for various values
of N and ε for Example 2

N 16 32 64 128 256 512
ε = 10−5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ε = 10−6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ε = 10−7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ε = 10−8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ε = 10−9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3: Computational results in terms of maximum absolute errors for various values
of N and ε and the rate of convergence rNε for Example 3

N 16 32 64 128 256 512
ε = 10−5 0.0586 0.0303 0.0154 0.0079 0.0039 0.0019

rNε 0.9516 0.9764 0.9630 1.0184 1.0375
ε = 10−6 0.0586 0.0303 0.0154 0.0077 0.0039 0.0019

rNε 0.9516 0.9764 1.0000 0.9814 1.0375
ε = 10−7 0.0586 0.0303 0.0154 0.0078 0.0039 0.0019

rNε 0.9516 0.9764 0.9814 1.0000 1.0375
ε = 10−8 0.0586 0.0303 0.0154 0.0078 0.0039 0.0019

rNε 0.9516 0.9764 0.9814 1.0000 1.0375
ε = 10−9 0.0586 0.0303 0.0154 0.0078 0.0039 0.0019

rNε 0.9516 0.9764 0.9814 1.0000 1.0375

Table 4: Computational results in terms of maximum absolute errors for various values
of N and ε and the rate of convergence rNε for Example 1

N 16 32 64 128 256 512
ε = 10−5 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−6 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−7 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−8 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
ε = 10−9 0.0112 0.0057 0.0029 0.0014 0.0007 0.0003

rNε 0.9745 0.9749 1.0506 1.0000 1.2224
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Figure 1: Computational solution of the given Example 1 for the fixed value N = 100
and various values of ε
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Figure 2: Computational solution of the given Example 2 for the fixed value N = 100
and various values of ε
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Figure 3: Computational solution of the given Example 3 for the fixed value N = 100
and various values of ε
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Figure 4: Computational solution of the given Example 4 for fixed value of N = 100 and
various values of ε

5 Conclusion

We have derived an exponentially fitted finite difference tridiagonal scheme
for solving singularly perturbed two-point BVPs at one endpoint (left or
right). We have carried out the convergence analysis for the proposed scheme
and performed the numerical experiments on four example problems (three
left-end and one right-end problems) for various values of N = 1/h and
perturbation parameter ε, which show that the scheme is of almost first-
order accurate. The computational results in terms of maximum absolute
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error are presented in Tables 1–4. It is easily observed from the tables that
the proposed method is capable of producing highly accurate results for a
fixed value of mesh size h, when the perturbation parameter ε tends to 0.
The maximum absolute errors are becoming uniform for any fixed values of
N when ε → 0. Furthermore, one can easily observe from Tables 1, 3, and
4 that the proposed exponential fitted finite difference scheme is capable of
producing first-order accurate uniformly convergent solution for any fixed
value of mesh size h = 1/N when perturbation parameter ε tends to 0.
In Figures 1–4, we present our solution and the exact solution for various
values of ε and a fixed value of N . Clearly, as shown in the figures, the
numerical solution and the exact solution are very close within the boundary
layers for smaller values of ε. Notably, the novelty of our method lies in its
independence from both deviating arguments and fitted meshes [15].
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terests.

References

[1] Andargie, A. and Reddy, Y. Two initial value problems approach for
solving singular perturbations problems, Am. J. Comput. Math. 2(03)
(2012), 213–216.

[2] Bender, C.M. and Orsazag, S.A. Advanced mathematical methods for
scientists and engineers, Springer, New York, 1999.

[3] Chakravarthy, P. and Reddy, Y.N. Exponentially fitted modified upwind
scheme for singular perturbation problems, Int. J. Fluid Mech. Res. 33
(2006), 119–136.

[4] Gold, R.R. Magneto hydrodynamic pipe flow, Part I. J. Fluid Mech. 13
(1962), 505–512.

[5] Habib, H.M. and El-Zahar, E.R. An algorithm for solving singular
perturbation problems with mechanization, Appl. Math. Comput. 188
(2007), 286–302.

[6] Hinch, E.J. Perturbation methods, Cambridge University Press, Cam-
bridge, 1991.

[7] Holmes, M.H. Introduction to perturbation methods, Springer, Berlin,
1995.

[8] Jayakumar, J. and Ramanujam, N. A numerical method for singular
perturbation problems arising in chemical reactor theory, Comput. Math.
Appl. 27 (1994,) 83–99.

Iran. J. Numer. Anal. Optim., Vol. 13, No. 4, 2023, pp 711–727



Kumar, Kumar Sinha and Ranjan 726

[9] Kadalbajoo, M.K. and Kumar, D. Initial value technique for singularly
perturbed two point boundary value problems using an exponentially fitted
finite difference scheme, Comput. Math. Appl. 57 (2009), 1147–1156.

[10] Kadalbajoo, M.K. and Kumar, D. A brief survey on numerical meth-
ods for solving singularly perturbed problems, Appl. Math. Comput. 217
(2010), 3641–3716.

[11] Kevorkian, J. and Cole, J.D. Perturbation methods in applied mathemat-
ics, 2nd Edition, Springer-Verlag, New York, 1981.

[12] Kumar, M. and Surabhi, T. An initial-value technique to solve third-
order reaction-diffusion singularly perturbed boundary-value problems,
Int. J. Comput. Math. 89(17) (2012), 2345–2352.

[13] Kumar, M., Singh, P. and Hradyesh Kumar, M. An initial-value tech-
nique for singularly perturbed boundary value problems via cubic spline,
Int. J. Comput. Methods Eng. Sci. Mech. 8(6) (2007), 419–427.

[14] Lorenz, J. Combinations of initial and boundary value methods for a class
of singular perturbation problems, Numerical analysis of singular pertur-
bation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen,
1978), pp. 295–315, Academic Press, London-New York, 1979.

[15] Madhu Latha, K., Phaneendra, K. and Reddy, Y.N. Numerical inte-
gration with exponential fitting factor for singularly perturbed two point
boundary value problems, British Journal of Mathematics & Computer
Science 3(3) (2013), 397–414.

[16] Miller, J.J.H. Singular perturbation problems in chemical physics, ana-
lytic and computational methods, XCVII Wiley, New York, 1997.

[17] Miller, J.J.H., Riordan, R.E.O. and Shishkin, G.I. Fitted numerical
methods for singular perturbation problems, error estimates in the max-
imum norm for linear problems in one and two dimensions, World Sci-
entific, 1996.

[18] Mishra, H. and Saini, S. Numerical solution of singularly perturbed two-
point boundary value problem via Liouville-Green transform, Am. J.
Comput. Math. 3(1) (2013), 1–5.

[19] Nayfeh, A.H. Perturbation methods, John Wiley & Sons, Inc., New York,
1979.

[20] Nayfeh, A.H. Introduction to perturbation techniques, Wiley-VCH, New
York, 1993.

[21] O’Malley, R.E. Introduction to singular perturbations, Academic Press,
New York, 1974.

Iran. J. Numer. Anal. Optim., Vol. 13, No. 4, 2023, pp 711–727



727 Singularly perturbed two-point boundary value problem ...

[22] O’Malley, R.E. Singular perturbation methods for ordinary differential
equations, Applied Mathematical Sciences, 89, Springer, Berlin, 1990.

[23] Padmaja, P., Aparna, P. and Gorla, R.S.R. An initial-value technique
for self-adjoint singularly perturbed two-point boundary value problems,
Int. J. Appl. Mech. Eng. 25(1) (2020), 106–126.

[24] Phaneendra, K. and Lalu, M. Gaussian quadrature for two-point singu-
larly perturbed boundary value problems with exponential fitting, Com-
munications in Mathematics and Applications 10(3) (2019), 447–467.

[25] Ranjan, R. and Prasad, H.S. An efficient method of numerical integration
for a class of singularly perturbed two point boundary value problems,
WSEAS Trans. Math. 17 (2018), 265–273.

[26] Ranjan, R. and Prasad, H.S., A fitted finite difference scheme for solving
singularly perturbed two point boundary value problems, Inf. Sci. Lett.
9(2), (2020), 65–73.

[27] Ranjan, R., Prasad, H.S. and Alam, J. A simple method of numerical
integration for a class of singularly perturbed two point boundary value
problems, i-manager’s Journal on Mathematics 7(1) (2018), 41.

[28] Roos, H.G., Stynes, M. and Tobiska, L. Numerical methods for singularly
perturbed differential equations, Springer, Berlin 1996.

[29] Smith, D.R. Singular perturbation theory: An introduction with applica-
tions, Cambridge University Press, Cambridge, 1985.

[30] Verhulst, F. Methods and applications of singular perturbations: Bound-
ary layers and multiple timescale dynamics, Springer, Berlin 2005.

[31] Vigo-Aguiar, J. and Natesan, S. An efficient numerical method for singu-
lar perturbation problems, J. Comput. Appl. Math., 192 (2006), 132–141.

How to cite this article
Kumar, N., Kumar Sinha, R. and Ranjan, R., Singularly perturbed two-
point boundary value problem by applying exponential fitted finite differ-
ence method. Iran. J. Numer. Anal. Optim., 2023; 13(4): 711-727.
https://doi.org/10.22067/ijnao.2023.83070.1283

Iran. J. Numer. Anal. Optim., Vol. 13, No. 4, 2023, pp 711–727

https://doi.org/10.22067/ijnao.2023.83070.1283.

	Singularly perturbed two-point boundary value problem by applying exponential fitted finite difference method
	N. Kumar, R. Kumar Sinha and R. Ranjan

